Journal of Applied Science and Advanced Technology

Journal Homepage: https://jurnal.umj.ac.id/index.php/JASAT

Analysis Structure and Function Cooling System on Unit D155A-6

Hasan Basri¹, Anwar Ilmar Ramadhan^{2*}, Ery Diniardi²

¹Department of Automotive and Heavy Equipment, Faculty of Engineering, Universitas Muhammadiyah Jakarta, Indonesia ²Department of Mechanical Engineering,, Faculty of Engineering, Universitas Muhammadiyah Jakarta, Indonesia

ARTICLE INFO

JASAT use only:

Received date : 6 September 2018 Revised date : 8 October 2018 Accepted date : 17 November 2018

Keywords: Repair Over heating Cooling system Unit D155A-6

ABSTRACT

As time went on many problems were encountered in the unit, one of which was the problem experienced by the D155A-6 unit, which was overheating troubleshooting caused by abnormal fan motors. In handling the problem, it is difficult to determine the data of the motor fan. Therefore, an initiative is needed to create tools to help deal with problems that occur. The purpose of this study is the manufacture of adapter tools for measurement of hydraulic pressure fan motors in troubleshooting the overheat engine in D155A-6 units. The results of this study are analyzing the structure and function of the cooling system in troubleshooting the overheat engine in the D155A-6 unit.

© 2018 Journal of Applied Science and Advanced Technology. All rights reserved

INTRODUCTION

The existence of advances in the science and technology of heavy equipment industry that led to the increasingly sophisticated technology used in companies, especially in the mining sector that requires heavy equipment as a support in order to achieve high productivity, with the conditions of work equipment that is always ready for work, it is expected that all mining activities can be implemented effectively and efficiently.

Bulldozer is a heavy equipment that has a large traction, as one of the supporters of mining which functions to do the work of digging, evicting, leveling, and can be operated on a muddy, rocky, hilly and forested area. Bulldozer needs, especially in mining companies that can be a problem is if the unit unscheduled breakdown occurs. These problems must be addressed immediately, because they will disrupt the productivity of the company.

Based on the background above, it becomes the basis for conducting an analysis on unit D155A-6, to get a solution and

 $\hbox{E-mail address: anwar.ilmar@umj.ac.id}$

improvement so that the Physical Availability (PA) unit is always maintained.

EXPERIMENTAL METHOD

The research method conducted can be seen in Figure 1.

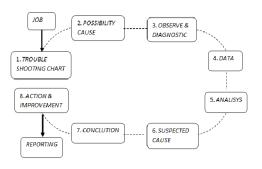


Fig. 1. Trouble shooting chart

RESULTS AND DISCUSSION

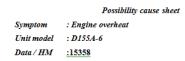
Before doing trouble shooting there are a number of preparations and work equipment both reference, equipment and also in identifying problems that need to be prepared, so that the handling of problems is more effective and efficient quickly resolved.

^{*} Corresponding author.

Website: https://jurnal.umj.ac.id/index.php/JASAT ISSN: 2622-6553 (Online)

Troubleshooting the overheat engine chart

The overheat chart engine troubleshooting is done using Table 1.


Table 1. Troubleshooting chart engine overheat

Trouble Fan speed is abnormal (Sound and/or vibration are abnormally large or engine over heats).

Related information	Before starting troubleshooting, check that oil level in hydraulic tank is normal.					
	Cause		Standard value in normal state/Remarks on troubleshooting			
	Г	Defective engine speed	★ Start engine and carry out troubleshooting.			
	1		Measurement conditions	Engine speed		
			Engine at low idle	740 * 60 rpm		
			Engine at high idle	2,100 ₋₅₀ rpm		
			If engine speed is not increased to specification, carry out trouble- shooting for "S-5 Engine hunts".			
	2	Defective PTO (fan pump drive)	Fan pump drive of PTO may be defective. Check it directly.			
Possible causes and standard value in normal state	Г	Defect in fan pump or fan motor	 Prepare with starting switch OFF, then run engine at high idle and carry out troubleshooting. 			
	3		Measurement conditions	Fan pump EPC circuit basic pressure		
			-	3.78 – 4.46 MPa {38.5 – 45.5 kg/cm²}		
			 Prepare with starting switch OFF, then run engine at high idle and carry out troubleshooting. 			
			Measurement conditions	Fan drive circuit pressure		
			Fan 100% mode	15.7 ± 2.5 MPa {160 ± 25 kg/cm²}		
			 Prepare with starting switch OFF, then run engine at high idle and carry out troubleshooting. 			
			Measurement conditions	Fan speed		
			Fan 100% mode	1,100 *5% rpm		
	4	Defective fan	Fan may be broken or may be installed defectively. Check it directly.			

Possibilities cause

As per the data below, it was checked from the simplest method where the engine overheated after being operated for 2-3 hours, ambient temperature in the range of 30-33°C and the unit experienced engine overheat problem at 15358 of HM as shown in Figure 2.

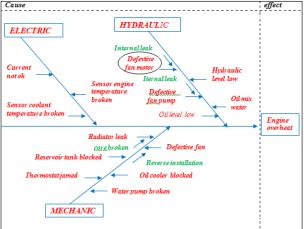


Fig. 2. Possibility cause

Analysis of the fishbone diagram above can be seen in the Table 2 below:

Table 2. Summary of possible fishbone diagrams

Possible Root Cause	Check	Root	
		Cause	
HYDRAULIC			
Oil engine low	Oil engine ok	No	
Oil mix water	Oil not mix water	No	
Hydraulic level low	Leveling hydraulic tank ok	No	
Reducing valve broken	Reducing valve ok	No	
Defective fan motor	Pressure fan motor not ok	Yes	
Defective fan pump	Pressure fan pump ok, not	No	
	internal leak		
MECHANICAL			
Radiator leak	Radiator ok	No	
Defective fan	Fan installing ok, not broken	No	
Reservoir tank blocked	Reservoir tank ok	No	
Raber radiator broken	Ruber radiator ok	No	
Strainer hydraulic tank blocked	Strainer blocked and facum,	No	
	replacement		
Belt selip (if make belt)	Make fan motor	No	
Oil cooler blocked	Belum dilakukan cek	No	
Thermostat jammed	Belum dilakukan cek	No	
Water pump leak	Water pump ok	No	
ELECTRICAL		1	
Sensor coolant temperature broken	Belum dilakukan cek	No	
Sensor engine temperature broken	Belum dilakukan cek	No	
Current not ok	Current ok	No	

Observe and diagnose

After observing the visual, checking and testing obtained the overheating engine hypothesis because the fan speed was not reached, can see Table 3.

Table 3. Checking and testing

Observe visual	Checking and testing
a.) Component : genuine komatsu	a.) Unit performance ok
b.) Not leakage, strainer hydraulic tank	b.) Pressure fan motor not ok
cloged	(monitor)
c.) Level oil hydraulic low, leveling	c.) Fan speed not ok (monitor)

Data

In this stage data collection is used as a consideration to analyze the problem and the data retrieval scheme can be seen in Table 4.

Table 4. Collecting Data

Component check	Standard measure	Actual	
Unit check visual	There were no findings of	Ok	
	leakage, component color		
	changes, noise, and component		
	burning in the unit area.		
Checkfan	Fan speed is not achieved	Not ok	
Radiator	Not bubbles, coolant not	Ok	
	spurts back		
Radiator core	Not dirty and mud	Ok	
Coolant	Level, not leaking from hose	Ok	
Radiator	Not clogged	Ok	
Engine oil level	Level	Ok	
Oil	Not milky flowating on	Ok	
	coolant		
Engine (speed)	Low idle:740 +400Rpm	735 Rpm (39 ⁰ C)	
	High idle: 2,100 - 500Rpm	1861 Rpm (41°C)	
Fan motor	Low idle: 13,5-18 Mpa	2,8 Mpa	
	High idle:13,5-18 Mpa	8,9 Mpa	
Fan motor mode 100%	1150 Rpm	880 Rpm	
Fan pump	Low idle: 135-180 Mpa	3,4 Mpa	
	High idle:135-180 Mpa	16,0 Mpa	
Self reducing valve	38,5 - 43,5Mpa	41Mpa	
internal leak fan motor	2000-3000cc/ 60 detik	± 3000-4000 cc/ 6	
		detik	

Basic analysis to determine the suspected cause: From the results of the examination can be concluded that the fan motor rotation is not achieved because the internal leak exceeds the allowable standard. Because all the pressure control fan pump and pressure output from the fan pump are in standard conditions. Internal leak can occur due to excessive wear in the motor fane component. Of these problems that cause nonstandard fan rotation and cooling in the cooling system to be less than maximum can be seen in Figure 3 and Table 5.

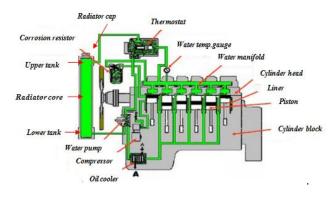


Fig. 3. Structure engine cooling system

Table 5. Data of Analysis

Analysis						
Component	Standard measure	Actual	Note			
Fan pump	15,7 ± 2,5 MPa {160±25kg/cm ² }	16 MPa	Ok			
Self reducing valve	3,78 – 4,46 MPa {38,5-45,5kg/cm ² }	4,1 MPa	Ok			
Internal leakage fan motor	Max. 2000-3000 cc/ 60 detik	± 3000-4000 cc/ 6 detik	Not ok			
Fan motormode 100%	13,5-18 MPa 1150-1300 Rpm	8,5 MPa 780 Rpm	Not ok			

Suspected cause

Possible root problems related to the cause of the problem. Possible causes of damage can be caused by many things, including foreign material entering the cooling system such as dust when hose replacement is sometimes contained in dust, so in hose replacement it is better to pressurized wind first, or when replacing or adding hydraulic oil can also foreign material enters the cooling system so make sure the cleanliness around the filling hole and others, then the absence of the motor fan replacement previous physically the fan motor does not look damaged, and concluded the fan motor is damaged probably because fatigue fracture can be seen in Figure 4.

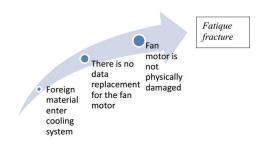


Fig. 4. Suspected cause

CONCLUSION

From the results of analysis, checking and data collection, it can be concluded that the occurrence of trouble Engine Overheat in this case is caused by the external leakage that is too large in the fan motor, so that the cooling fan rotation is not achieved, causing cooling by the cooling fan to cool the radiator does not work optimally, the effect of coolant experiencing a temperature rise too fast and not cooled to the maximum causes the engine not to be cooled to the maximum until the temperature is too high or the engine overheats.

REFERENCES

[1] Basri, H.,Rasma, Ramadhan, A.I., Diniardi, E., 2017, Analisa Kerusakan Alternator Semi Konduktor Regulator Pada Charging System Pada Unit Dump Truck 465-5, Prosiding Semnastek

- [2] Rasma, Basri, H., Ramadhan, A. I., 2013, Analisa Pengaruh Tekanan Terhadap Steering Control Valve Alat Berat Pada Unit Grader (GD) Tipe 621R-1, Prosiding Seminar Inovasi Teknologi dan Rekayasa Industri 2013
- [3] Purwono, H, Rasma, 2017, Analisa Engine Overheat Pada Unit Komatsu Bulldozer D155A-6, Prosiding Semnastek
- [4] Part Book, KOMATSU D155A-6. PT. United Tractors Tbk.
- [5] Kamsar. Hasbi, Muhammad. Rachman, Aditya, 2016. Analisis Sistem Hidrolik Pengangkat Pada Alat Berat Jenis Wheel Loader Studi Kasus Dinas Pekerjaan Umum Kab. Bombana, DINAMIKA – Jurnal Ilmiah Teknik Mesin, Vol. 1 No. 1.

- [6] Mulyanto, S., 2018, Analisa Fan Control Declinepada Unit AlatBerat Bulldozer Komatsu D375-6, DINAMIKA – Jurnal Ilmiah Teknik Mesin, Vol 9 No 2
- [7] Basic Competency 1 TC, Hydraulic System. PT. United Tractors Tbk.
- [8] Purwono, H, dan Rasma, 2017, Analisa Engine Overheat Pada Unit Komatsu Bulldozer D155A-6, Prosiding Semnastek
- [9] Diniardi, E., Ramadhan, A. I., Basri, H., 2014, Analisis Kekuatan Mekanik Dan Struktur Mikro Pada Material Polimer Penyusun Kipas Radiator, Jurnal Teknologi, Vol 6 No 1
- [10] Nugrahanto, I., 2016, Analisis Monitoring Pelumas Hidrolik Wheel Loader, Jurnal Ilmiah - VIDYA, Vol. 24 No. 2