Potensi Moringa Oleifera sebagai Agen Neuroprotektif pada Kondisi Penuaan di Otak

Muhamad Sadam Safutra, Agian Jeffilano Barinda, Wawaimuli Arozal

Abstract


Penyakit neurodegeneratif merupakan penyakit yang banyak menimbulkan kejadian morbiditas dan mortalitas pada lansia. Selama proses penuaan, secara progresif kemampuan fungsional otak akan menurun. Penuaan otak dapat dimanifestasikan sebagai penurunan memori dan kognitif, yang biasanya terjadi oleh karena perubahan plastisitas struktural dendritik yang dapat berkembang menjadi penyakit neurodegeneratif. Sampai saat ini, belum ada pengobatan yang efektif untuk penyakit neurodegeneratif. Beberapa obat digunakan untuk menghilangkan gejala meskipun biasanya menimbulkan banyak efek samping. Oleh karena itu penelitian dan pengembangan obat dari berbagai tumbuhan yang memiliki efek neuroprotektif sebagai suplemen untuk memperbaiki fungsi otak banyak dilakukan. Kelor (Moringa oleifera (MO)) diketahui mempunyai aktivitas anti inflamasi, antiapoptosis, disamping juga memiliki nilai gizi yang baik. Komponen bioaktif yang terdapat dalam ekstrak MO diantaranya polifenol, saponin, tannin, isothiocyanate dan flavonoid diduga berperan sebagai neuroprotektif. Mekanisme molekuler yang terlibat pada MO sebagai neuroprotektif adalah jalur Nuclear factor kappa-beta (NF‐kB) dan Nuclear erythroid 2-related factor 2 (Nrf2), glukosinolat yang terdapat dalam MO akan terhidrolisis menjadi isothiocyanate yang akan  secara langsung berinteraksi dengan Kelch-like ECH-associated protein 1 (Keap1) di sitoplasma dan menyebabkan translokasi Nrf2 ke nukleus, selanjutnya Nrf2 akan berikatan dengan Antioxidant response element (ARE) yang akan menghasilkan enzim-enzim detoksifikasi. Selain itu Nrf2 juga menghambat translokasi NFkB ke nukleus sehingga menekan ekspresi sitokin Interleukin (IL) dan Tumor nuclear factor-α (TNF-α) yang berperan dalam inflamasi. Mekanisme lain yang mungkin adalah jalur pensinyalan Tropomyosin receptor kinase B (TrkB). Dengan demikian MO berpotensi kuat sebagai agen neuroprotektif pada penuaan otak.


Keywords


moringa oleifera; neuroprotektif; penuaan otak

Full Text:

PDF

References


Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180-186. doi:10.1038/nature20411

Mattson MP, Arumugam T V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018;27(6):1176-1199. doi:10.1016/j.cmet.2018.05.011

Sikora E, Bielak-Zmijewska A, Dudkowska M, et al. Cellular Senescence in Brain Aging. Front Aging Neurosci. 2021;13(February):1-23. doi:10.3389/fnagi.2021.646924

Ridwan R, Hamim H, Hidayati N, Suharsono S. Molecular and morphological analysis of Indonesian drumstick tree (Moringa oleifera Lam.). Asian J Plant Sci. 2021;20(1):131-142. doi:10.3923/ajps.2021.131.142

Senthilkumar A, Karuvantevida N, Rastrelli L, Kurup SS. Traditional Uses , Pharmacological Efficacy , and Phytochemistry of Moringa peregrina ( Forssk .) Fiori . — A Review. 2018;9(May):1-17. doi:10.3389/fphar.2018.00465

Vaiserman AM, Lushchak O V., Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev. 2016;31:9-35. doi:10.1016/j.arr.2016.08.004

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194. doi:10.1016/j.cell.2013.05.039

Elobeid A, Libard S, Leino M, Popova SN, Alafuzoff I. Altered proteins in the aging brain. J Neuropathol Exp Neurol. 2016;75(4):316-325. doi:10.1093/jnen/nlw002

Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry. 2016;17(8):587-599. doi:10.3109/15622975.2013.797104

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10). doi:10.1186/gb-2013-14-10-r115

Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front Cell Dev Biol. 2021;9(August):1-22. doi:10.3389/fcell.2021.683459

Thanan R, Oikawa S, Hiraku Y, et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci. 2014;16(1):193-217. doi:10.3390/ijms16010193

Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci. 2023;24(5):1-19. doi:10.3390/ijms24054741

Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol. 2011;94(2):166-200. doi:10.1016/j.pneurobio.2011.04.013

Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer’s disease. Mech Ageing Dev. 2013;134(10):486-495. doi:10.1016/j.mad.2013.08.005

Tanaka K, Matsuda N. Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. Biochim Biophys Acta - Mol Cell Res. 2014;1843(1):197-204. doi:10.1016/j.bbamcr.2013.03.012

Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49(January):35-45. doi:10.1016/j.mito.2019.07.003

Ogrodnik M, Zhu Y, Langhi LGP, et al. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab. 2019;29(5):1061-1077.e8. doi:10.1016/j.cmet.2018.12.008

Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303-314. doi:10.1016/j.cmet.2015.11.011

Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870-880. doi:10.1038/nm.3651

Amor S, Woodroofe MN. Innate and adaptive immune responses in neurodegeneration and repair. Immunology. 2014;141(3):287-291. doi:10.1111/imm.12134

Shettigar N, Yang CL, Tu KC, Suh CS. On The Biophysical Complexity of Brain Dynamics: An Outlook. Dynamics. 2022;2(2):114-148. doi:10.3390/dynamics2020006

Petralia RS, Mattson MP, Yao PJ. Communication breakdown: The impact of ageing on synapse structure. Ageing Res Rev. 2014;14(1):31-42. doi:10.1016/j.arr.2014.01.003

Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front Mol Neurosci. 2020;13(July). doi:10.3389/fnmol.2020.00116

Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016;5(2):49-56. doi:10.1016/j.fshw.2016.04.001

Hashim FJ, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective assessment of moringa oleifera leaves extract against oxidative‐stress‐induced cytotoxicity in shsy5y neuroblastoma cells. Plants. 2021;10(5). doi:10.3390/plants10050889

Hannan MA, Kang JY, Mohibbullah M, et al. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials. J Ethnopharmacol. 2014;152(1):142-150. doi:10.1016/j.jep.2013.12.036

Amina M, Bhat RS, Al-Dbass AM, et al. The protective effect of Moringa oleifera plant extract against glutamate-induced DNA damage and reduced cell viability in a primary retinal ganglion cell line. PeerJ. Published online 2021:1-19. doi:10.7717/peerj.11569

Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-Mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev. 2013;2013. doi:10.1155/2013/695936

Arozal W, Purwoningsih E, Lee HJ, Barinda AJ, Munim A. Effects of Moringa oleifera in Two Independents Formulation and as Neuroprotective Agent Against Scopolamine-Induced Memory Impairment in Mice. Front Nutr. 2022;9(March):1-13. doi:10.3389/fnut.2022.799127

Abdoul Y, Mahaman R, Feng J, Huang F, Tanko M, Salissou M. Moringa Oleifera Alleviates A β Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Published online 2022.

Zhou J, Yang WS, Suo DQ, et al. Moringa oleifera seed extract alleviates scopolamine-induced learning and memory impairment in mice. Front Pharmacol. 2018;9(APR):1-11. doi:10.3389/fphar.2018.00389

Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF‐kB/Nrf2/HO‐1 signaling pathway: A review. Food Biochem. Published online 2022. doi:10.1111/jfbc.14451




DOI: https://doi.org/10.24853/mujg.4.2.138-151

Refbacks

  • There are currently no refbacks.


Indexed by:

     

 

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

Copyright of Muhammadiyah Journal of Geriatric (e issn: 2721-6837)

Powered by Puskom-UMJ