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ABSTRACT 

 

Gas turbines are essential for offshore operations in the oil and gas industry due to their lightweight 

structure and high efficiency. Conventional maintenance relying on parameter monitoring and engine 

washing often causes unplanned downtime and suboptimal recovery. This study develops gas turbine 

performance prediction models using Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) deep learning approaches. Historical operational data were preprocessed through cleaning, 

normalization, and feature selection using Random Forest and LASSO. The LSTM model achieved an 

RMSE of 3.96 and an R² of 0.9991, while the GRU model achieved an RMSE of 4.58 and an R² of 

0.9988. Comparative analysis showed that LSTM slightly outperformed GRU in accuracy, although 

GRU converged faster. These findings demonstrate the potential of integrating deep learning methods 

into predictive maintenance frameworks to enhance gas turbine reliability and efficiency. 
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1. Introduction 

 

Gas turbines play a pivotal role in offshore oil 

and gas operations due to their light weight 

and high operational efficiency. However, 

traditional maintenance approaches—relying 

on real-time parameter monitoring and 

scheduled engine washing—often result in 

unplanned downtime and suboptimal 

recovery. Moreover, conventional 

thermodynamic models struggle to capture 

the nonlinear behavior of gas turbines under 

varying conditions. Several studies have 

introduced more advanced predictive 

techniques. High Dimensional Model 

Representation (HDMR) and Artificial 

Neural Networks (ANN) for performance 

prediction [1]. Bayesian hierarchical model 

for Remaining Useful Life (RUL) estimation, 

is used for enhancing the integration of new 

operational data [2]. Convolutional Neural 

Networks (CNN) combined with Extreme 

Gradient Boosting (XGBoost) for fault 

diagnosis, improving both interpretability 

and accuracy [3]. More recently, deep 

learning models such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit 

(GRU) have been explored for prognostics of 

rotating machinery. Found GRU to have 

faster convergence and robust predictive 

performance for wind turbine condition 

monitoring [4]. LSTM is also used to 

optimize gas turbine maintenance, achieving 

notable gains in reliability and cost efficiency 

[5]. Despite these advancements comparative 

research on LSTM and GRU specifically for 
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gas turbine performance prediction remains 

limited. Accordingly, this study develops and 

compares both models using historical data 

from an offshore platform to evaluate 

predictive accuracy and computational 

efficiency. By leveraging deep learning, we 

aim to strengthen predictive maintenance 

strategies, enhance turbine reliability, and 

minimize operational downtime in offshore 

energy operations. 

 

2. Material and Methods 

 

This study utilized historical operational data 

from a gas turbine operating on an offshore 

oil and gas platform. Data were collected via 

the Distributed Control System (DCS) and 

Open Platform Communications (OPC) 

server from December 2018 to April 2020. 

Recorded operational parameters included 

Suction Temperature, Discharge 

Temperature, Gas Producer Speed, Fuel 

Flow, and Lube Oil Pressure, with gas turbine 

shaft power as the target variable. 

 

2.1 Data Preprocessing 

 

Data preprocessing was conducted to ensure 

data quality, including: 

a. Data Cleaning: Removed invalid entries 

and missing values. 

b. Outlier Removal: Applied IQR method to 

eliminate significant outliers. 

c. Normalization: Used min-max scaling 

(0–1) to enhance model training stability. 

 

2.2 Feature Selection 
 

Two feature selection methods were 

employed to identify important variables 

significantly influencing the output: 

a. Random Forest Importance: Features 

were ranked based on importance scores. 

b. Least Absolute Shrinkage and Selection 

Operator (LASSO): A regularization 

technique that reduces coefficients of 

less significant variables towards zero. 

Selected features for modeling included High 

Pressure Compressor Flow, Average Exhaust 

Gas Temperature, High Pressure Compressor 

Suction Temperature, High Pressure 

Compressor Discharge Temperature, Fuel 

Pressure, and High Pressure Compressor 

Efficiency. 

 

2.3 Development 

2.3.1 Long Short-Term Memory (LSTM) 

 

Long Short-Term Memory (LSTM) is a 

specialized form of recurrent neural network 

(RNN) designed to capture long-range 

dependencies in sequential data. This is 

achieved through the use of memory cells 

and gating mechanisms. The structure and 

function of an LSTM cell are described in 

detail by equations (1) to (6). 
 

𝑓𝑡 =  𝜎(𝑊𝑓  𝑥 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (1) 

𝑖𝑡 =  𝜎(𝑊𝑖  𝑥 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (2) 

ĉ𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐  𝑥 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐) (3) 

𝐶𝑡 =  𝑓𝑓 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗  ĉ𝑡 (4) 

𝑂𝑡 =  𝜎(𝑊0 𝑥 [ℎ𝑡−1, 𝑥𝑡] +  𝑏0) (5) 

ℎ𝑡 =  𝑂𝑡  𝑥 tanh (𝐶𝑡) (6) 

 

Where : 
𝑓𝑡 : Forget gate 

𝑖𝑡 : Input gate 

ĉ𝑡 : Candidate cell state 

𝐶𝑡  : Cell output at the current time t 

𝑂𝑡 : Output gate 

ℎ𝑡 : Cell output at the current time t 

𝐶𝑡−1 : 
cell outputs at the previous time 

𝑥𝑡−1 

ℎ𝑡−1 : 
cell outputs at the previous time 

𝑥𝑡−1 

𝑥𝑡 : Input to the LSTM cell 

𝑊 : Weight of neurons 

B : Bias for each weight 
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2.3.2 Gated Recurrent Unit (GRU) 

 

A variant of RNNs with a simpler 

architecture compared to LSTM, utilizing 

reset and update gates for learning sequential 

dependencies. Both models were 

constructed with two hidden layers, ReLU 

activation functions, and a final dense output 

layer. Hyperparameters such as the number 

of neurons, batch size, and number of epochs 

were optimized through experimental trials. 

 
𝑟𝑡 =  𝜎( 𝑉(𝑥𝑟) ⋅ 𝑥𝑡 +  𝑊(ℎ𝑟) ⋅ ℎ(𝑡−1) +  𝑝𝑟) (7) 

𝑧𝑡 =  𝜎( 𝑉(𝑥𝑧) ⋅ 𝑥𝑡 +  𝑊(ℎ𝑧) ⋅ ℎ(𝑡−1) + 𝑝𝑧) (8) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ( 𝑉𝑥𝑐 ⋅ 𝑥𝑡 + 𝑊ℎ𝑐 ⋅ ( 𝑟𝑡 ∗ ℎ𝑡−1) + 𝑝𝑐) (9) 

ℎ𝑡 =  ( 1 −  𝑧𝑡) ∗ ℎ(𝑡−1) +  𝑧𝑡 ∗ 𝑐𝑡   (10) 

𝜎(𝑡) =
1

(1+𝑒(−𝑡))
    (11) 

F(𝑡) =
𝑒𝑡−𝑒−𝑡

𝑒𝑡+𝑒−𝑡
 (12) 

 
Where : 

𝑟𝑡 : Reset gate. 

𝑧𝑡 : Update gate. 

𝑐𝑡 : Candidate hidden state. 

ℎ𝑡 : Final hidden state. 

𝜎 : Sigmoid activation function. 
𝑡𝑎𝑛ℎ : Activation function. 

 

2.4 Data Splitting 

 

The dataset was randomly divided into: 

a. Training set 70% 

b. Validation set 15% 

c. Testing set 15% 

This split ensured balanced data 

representation across subsets. 

 

2.5 Model Evaluation 

 

To evaluate how well the model performed, 

several statistical indicators were employed: 

a. Mean Squared Error (MSE) 

b. Root Mean Squared Error (RMSE) 

c. Mean Absolute Error (MAE) 

d. Coefficient of Determination (R²) 

These evaluation criteria offered a thorough 

insight into the predictive accuracy of the 

model when applied to gas turbine 

operational datasets. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1
 

(14) 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

 
(15) 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 
(16) 

Where : 

𝑦𝑖 : Represents the actual value of the 

target variable (measured electrical 

power). 

ŷ𝑖 : Denotes the predicted value of the 

target variable (predicted electrical 

power). 

𝑦̅ : Refers to the mean value of the target 

variable (average electrical power). 

𝑛 : Total number of observations used in 

the prediction. 

 

These metrics provide a comprehensive 

assessment of the predictive accuracy and 

robustness of the models. 

 

3. Results and Discussions 

 

3.1 Data Pre-processing 

 

The dataset utilized in this study consisted of 

operational parameters of a gas turbine 

system under normal operating conditions 

collected from June 2018 to April 2020. 

These parameters captured various 

operational states and load variations, 

providing a comprehensive foundation for 

model development. 
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3.1.1 Missing Value Analysis and Cleaning 

The initial data cleaning step involved 

removing invalid string entries such as "No 

Data," "Bad," "Not Connect," and "I/O 

Timeout," which indicated system errors 

during data collection. Since these entries did 

not contain valid numerical values, they were 

excluded to maintain dataset integrity. 

Subsequently, missing values across multiple 

numerical features were addressed by 

removing incomplete rows. A duplicate 

check was then performed, confirming that no 

duplicate entries were present.The dataset 

was thus cleaned and prepared for the next 

stages of analysis. A summary of the cleaning 

process is presented in Table 1. 

Table 1. Summary of Missing Record Removal 

Description Data Remarks 

Before Missing Value Removal 1,002,224 Rows 

After Missing Value Removal 697,061 Rows 

Total Missing Value 305,163 Rows 

After Duplicate Check 697,061 Rows 

 

3.1.2 Analysis Outlier 

Outliers are data points that differ 

significantly from the majority and can distort 

statistical analysis and reduce machine 

learning accuracy. To maintain data quality, 

this study detected outliers by analyzing 

skewness and kurtosis to assess distribution 

asymmetry and peakedness. Based on the 

distribution characteristics, the appropriate 

handling method was selected. For most 

variables, the Interquartile Range (IQR) 

method was applied, as the data were 

approximately normal or slightly skewed. 

IQR was chosen for its effectiveness in 

identifying extreme values without high 

sensitivity to distribution shape. A summary 

of the outlier analysis is shown in Table 2. 

 

 
 

Table 2. Statistics and Distribution Analysis for Outlier Detection 

 

Variable Count Mean Std Dev Min 25% 50% 75% Max Skewness Kurtosis 

ngp 697,061 96.75 9.61 0 96.87 97.90 98.64 100.01 -9.77 95.30 

npt 697,061 71.54 7.16 0 71.48 72.35 72.99 78.57 -9.59 92.87 

T1 697,061 84.44 6.17 0 83.10 84.93 86.74 97.7 -8.23 87.82 

T5 avg 697,061 1,163.13 135.58 0 1,160 1,180 1,205.98 1,254 -6.93 50.34 

Lube oil 
pressure 

697,061 48.36 6.91 -25 48.31 49.18 50.06 57.62 -7.07 52.30 

Lube oil 
temperature 

697,061 132.70 5.15 0 131.39 133.22 134.88 143.76 -7.24 67.59 

Mfcv position 697,061 66.71 9.56 -25 65.81 67.78 69.87 80.95 -6.10 41.86 

Fuel pressure 697,061 175.33 19.12 -75 177.30 177.50 177.70 212.24 -9.52 94.09 

Surge margin 697,061 79.97 22.92 -100 73.50 79.83 88.83 859.95 -1.85 60.08 

Hpc suction 
pressure 

697,061 580.07 56.75 -271.75 582.59 586.62 587.81 1,071.5 -10.02 99.79 

Hpc discharge 
pressure 

697,061 1,124.26 110.64 -543.75 1,128.07 1,135.61 1,142.71 1,308.8 -9.90 97.46 
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Hpc suction 
temperature 

697,061 77.99 2.35 0 76.80 78.00 79 115.33 5.32 88.77 

Hpc disch 
temperature 

697,061 197.84 11.08 0 197.34 198.89 200.23 247.60 -9.09 90.82 

Hpc flow 697,061 16.34 2.49 0 14.40 17.30 18 23.01 -2.95 14.75 

Hpc head 697,061 29.25 1.97 0 29.46 29.46 29.46 29.46 -10.99 127.28 

Hpc efficiency 697,061 0.62 0.86 -31.85 0.63 0.635 0.64 31.88 -0.41 762.18 

Engine power 697,061 905.49 171.64 0 748.77 969.50 1,060 1,266.90 -1.85 6.77 

3.1.3 Outlier Detection and Removal 

 

Outlier removal was performed using the 

Interquartile Range (IQR) method. For each 

variable, Q1 and Q3 were calculated, and data 

falling below Q1 − 1.5×IQR or above Q3 + 

1.5×IQR were identified as outliers and 

excluded from the dataset. The detailed 

results of the outlier detection process, 

including the calculated quartiles, bounds, 

and the number of removed observations for 

each feature, are summarized in Table 3. 

 

 

Table 3. Summary Outlier Feature 

Variable Q1 Q3 IQR 
Lower 

Bound 

Upper 

Bound 
Data Removal 

Ngp 96.88 98.65 1.77 94.23 101.3 15,166 

Npt 71.53 73.02 1.49 69.3 75.25 13,283 

T1 83.17 86.76 3.59 77.78 92.15 13,574 

T5 avg 1162 1206 44 1096 1272 291 

Lube oil pressure 48.38 50.06 1.69 45.85 52.59 630 

Lube oil temperature 131.5 134.87 3.37 126.45 139.92 1,120 

Mfcv position 66.06 70 3.94 60.14 75.91 2,329 

Fuel pressure 177.31 177.69 0.38 176.73 178.27 19,581 

Surge margin 74.37 88.8 14.44 52.71 110.46 6,662 

Hpc suction pressure 582.59 587.75 5.16 574.86 595.48 9,984 

Hpc discharge pressure 1,129.18 1,142.71 13.53 1,108.89 1,163.01 3,955 

Hpc suction temperature 76.77 78.9 2.13 73.57 82.1 1,979 

Hpc discharge temperature 197.58 200.24 2.67 193.58 204.24 10,285 

Hpc flow 14.4 18.07 3.67 8.9 23.57 0 

Hpc head 29.46 29.46 0 29.46 29.46 21 

Hpc efficiency 0.63 0.64 0.01 0.62 0.66 4,091 

Engine power 752 1,060 308 290 1,522 0 

 

Table 4. Summary of Data Cleaning Process Description Data Remarks 
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Before Missing value Removal 1,0002,224 Rows 

After Missing value Removal 697,061 Rows 

After Duplicate Check 697,061 Rows 

After Outlier Removal 594,110 Rows 

A summary of the data cleaning process is 

presented in Table 4. After initial data 

collection, the dataset underwent a series of 

cleaning steps to improve data quality. First, 

string-type missing values were removed, 

followed by a duplicate check to ensure data 

consistency. Afterward, outlier detection and 

removal were conducted to eliminate extreme 

deviations.The final clean dataset is now 

ready for use in the subsequent analysis.  

Figure 1. illustrates the comparison between 

the dataset before and after outlier removal. 

The red line represents the original data, 

which contains several extreme deviations 

and irregular spikes in Engine Power over 

time. After applying the outlier removal 

process, shown by the blue line, the data 

becomes significantly smoother and more 

consistent, indicating a cleaner and more 

reliable dataset for further analysis. 

 
 

Figure 1. Comparison Of Engine Power Over Time Before vs After Outlier Removal 

 

3.2 Feature Selection 

 

Feature selection was performed using 

Random Forest and LASSO regression to 

identify the most relevant variables for shaft 

power prediction. Both methods highlighted 

similar key features, including HPC Flow, 

Exhaust Gas Temperature, HPC Suction and 

Discharge Temperature, Fuel Pressure, and 

HPC Efficiency. These features improved 

model accuracy and reduced overfitting. 
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Figure 2. Comparison Of Random Forest vs Least Absolute Shrinkage and Selection Operator 

3.3 Data Normalization 

 

After outlier removal, Min-Max 

normalization was applied to rescale all 

feature values within the [0, 1] range. This 

normalization procedure standardizes feature 

magnitudes, facilitating faster convergence 

and improved stability during model training. 

3.4 Data Splitting 

 

The normalized dataset was partitioned into 

three subsets: 

a. 70% for model training 

b. 15% for validation 

c. 15% for testing 

The dataset was partitioned into three distinct 

subsets to support effective model training 

and evaluation. Specifically, the training set 

was used to fit the model parameters, the 

validation set was employed for 

hyperparameter tuning and overfitting 

monitoring, and the test set was reserved for 

assessing the model’s generalization 

capability on previously unseen data. The 

detailed distribution of the data split is 

summarized in Table 5. 

 

Table 5. Dataset Splitting Results 

 

Dataset 
Numbers of 

Samples 
Data Dimensions 

Training 415,877 (415,877, 6) 

Validation 89,116 (89,116, 6) 

Testing 89,117 (89,117, 6) 

3.5 Model Architecture 

 

Figure 3 shows the architecture of the deep 

learning model used for shaft power 

prediction, applicable to both LSTM and 

GRU configurations. The model starts with 

an Input Layer receiving six features: hpc 

flow, ts avg, hpc suction temp, hpc disch 

temp, fuel pressure, and hpc efficiency. These 

are processed through two recurrent layers 

(LSTM or GRU) with 64 and 32 neurons, 

each followed by a 20% Dropout layer to 

prevent overfitting. A Dense Layer with 16 

neurons using ReLU activation extracts high-

level features, and a final Output Layer with 

one neuron predicts engine power. The 

architectures are identical, differing only in 

the type of recurrent unit. 
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Figure 3.  Model Architecture for LSTM and GRU Network 

 

3.5.1 Model Training 

 

Based on Table 4, LSTM and GRU models 

were trained using Adam optimizer (learning 

rate = 0.001) and Mean Squared Error (MSE) 

as the loss function. Experiments varied batch 

sizes (32, 64, 128) and epochs (100, 200, 

300), resulting in eighteen training runs. The 

choice of these parameters aimed to observe 

model learning dynamics and convergence 

behavior, ensuring fair comparisons by 

keeping other hyperparameters constant. 

 
 

 

 

Table 4. Configuration of Training Parameters for LSTM and GRU Models 

 

No 
Loss 

Function 

Batch 

size 
Epochs 

Learning 

Rate 
Model Optimizer 

1 MSE 32 100 0.001 LSTM Adam  

2 MSE 32 200 0.001 LSTM Adam 

3 MSE 32 300 0.001 LSTM Adam 

4 MSE 64 100 0.001 LSTM Adam 

5 MSE 64 200 0.001 LSTM Adam 

6 MSE 64 300 0.001 LSTM Adam 

7 MSE 128 100 0.001 LSTM Adam 

8 MSE 128 200 0.001 LSTM Adam 

9 MSE 128 300 0.001 LSTM Adam 

10 MSE 32 100 0.001 GRU Adam 

11 MSE 32 200 0.001 GRU Adam 

12 MSE 32 300 0.001 GRU Adam 

13 MSE 64 100 0.001 GRU Adam 

14 MSE 64 200 0.001 GRU Adam 
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15 MSE 64 300 0.001 GRU Adam 

16 MSE 128 100 0.001 GRU Adam 

17 MSE 128 200 0.001 GRU Adam 

18 MSE 128 300 0.001 GRU Adam 

 

3.6 Training Time Efficiency Analysis 

 

In addition to evaluating predictive accuracy, 

this study also analyzed the training time 

efficiency of the LSTM and GRU models. 

Training durations were measured across 

various combinations of batch sizes and 

epochs, and the results are visualized in 

Figure 4. 

 

 
 

Figure 4 Training Time Comparison by Model, Epochs and Batch size 

 

The analysis indicates that GRU generally 

requires less training time compared to 

LSTM, especially in configurations with 

larger batch sizes and higher epoch counts. 

However, in certain cases—such as with a 

batch size of 32 and 100 epochs—GRU 

required slightly more time than LSTM. This 

suggests that while GRU is not consistently 

faster in every scenario, it still demonstrates 

superior computational efficiency in most 

training conditions. 

 

3.7 Baseline Model Performance 
 

To establish a performance benchmark, a 

Linear Regression model was developed 

using the same training dataset and selected 

features as the LSTM and GRU models. The 

goal was to evaluate the improvement offered 

by deep learning models over a conventional 

approach. 

 
Table 6. Baseline Linear Regression Model 

Performance 

 

Metric Value 

Mean Squared Error (MSE) 828.5864 

Root Mean Squared Error (RMSE) 28.7852 

Mean Absolute Error (MAE) 20.1905 

Coefficient of Determination (R² Score) 0.9533 

 

The Linear Regression model achieved an R² 

of 0.9533, indicating reasonable predictive 

power. However, the higher error values—

particularly RMSE—highlight its limitations 



IC-TM-005   e - ISSN : 2810 – 0956 
Website : jurnal.umj.ac.id/index.php/icecream 

 

 
 
ICEREAM 2025  10 
Fakultas Teknik Universitas Muhammadiyah Jakarta, 28 Mei 2025 

in capturing the nonlinear and sequential 

patterns of gas turbine data. The next section 

presents a comparative evaluation of LSTM 

and GRU performance. 

 

3.8 Model Evaluation 

 

To evaluate the effectiveness of the LSTM 

and GRU models, performance was 

compared using MSE, RMSE, MAE, and R² 

metrics. The optimal LSTM configuration 

(batch size = 32, epochs = 200) achieved an 

R² of 0.9991, RMSE of 3.96, and MAE of 

1.83, while the best GRU configuration 

(batch size = 32, epochs = 300) reached an R² 

of 0.9988 and RMSE of 4.58. Figure 4 

illustrate comparisons of R² and MSE scores, 

respectively, demonstrating that LSTM 

consistently provides higher accuracy with 

lower errors than GRU. Overall, LSTM offers 

superior predictive accuracy, making it 

preferable for applications requiring high 

precision, whereas GRU is advantageous for 

faster training and computational efficiency. 

 

 

 

 
 

Figure 4. Heatmap Comparison of R², MSE Score for LSTM and GRU Model 
  

 

3.9 Testing Results and Error Analysis 

 

After completing the training and evaluation 
phases, the final step was to test the models 

using an unseen testing dataset. This stage 

was designed to assess the models' ability to 

generalize to new data.  The best 

configurations for each architecture LSTM 

and GRU, both with a batch size of 32 and 

200 epochs were selected for the testing 

process. The testing results were obtained by 

comparing the predicted outputs of both 

models against the actual test data. As  shown 

in Figure 5, the prediction curve produced by 

the LSTM model aligns more closely with the 

actual data pattern than the GRU model, 

indicating superior predictive performance. 

 

 
Figure 5. Testing Comparison: LSTM and GRU 

Models vs. Actual Data 
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Furthermore, Figure 6 provides a more 

detailed illustration of the forecasting results 

for both models using their optimal 

configurations. 

 

 
Figure 6. Forecasting Results of the LSTM and GRU 

Models (Batch Size = 32, Epochs = 200). 

 

In addition, Figure 7 presents the histogram 

of prediction errors for both models. The 

LSTM model exhibits a narrower and more 

concentrated error distribution around zero, 

indicating smaller and more consistent   

prediction errors compared to the GRU 

model.  

 
 

Figure 7. Histogram of Prediction Errors for the 

LSTM and GRU Models (Batch Size = 32, Epochs = 

200) 

 

Overall, these testing results further reinforce 

the previous findings, confirming that the 

LSTM model achieves superior predictive 

performance in forecasting gas turbine shaft 

power output. While the GRU model offers 

greater computational efficiency, the LSTM 

model demonstrates higher accuracy and 

reliability in time-series prediction tasks. 

 

4. Conclusion 

This study evaluated LSTM and GRU models 

for gas turbine performance prediction using 

historical operational data from an offshore 

platform. The data preprocessing steps 

including cleaning, feature selection, and 

normalization successfully improved data 

quality for model training. The LSTM model 

achieved the best predictive performance 

with an RMSE of 3.96 and an R² of 0.9991, 

slightly outperforming the GRU model 

(RMSE 4.58; R² 0.9988). In comparison, the 

baseline linear regression model achieved 

only R² 0.9533 and RMSE 28.78, 

highlighting the superior capability of deep 

learning models in capturing nonlinear and 
temporal patterns.  

These findings support the implementation of 

the LSTM model in gas lift systems, where 

gas turbines drive compressor packages to 

maintain reservoir pressure. By integrating 

the model into SCADA or DCS systems, 

operators can monitor shaft power 

performance in real time, detect early 

degradation, and plan preventive 

maintenance. This approach enhances 

operational reliability and energy efficiency 

in dynamic offshore environments. 
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