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ABSTRACT 

This paper presents the free vibration analysis of skew plates based on the first-order shear 
deformation theory (FSDT). The development of finite element plates based on first-order shear 
deformation plate theory has been carried out and provides good results in plate element 
analysis. In this study, we investigate plate analysis in the case of free vibration to obtain natural 
frequency using one of the plate elements developed based on FSDT, numerical analysis was 
performed on skew plates case with varying skew angles and length to thickness ratios, the 
result will be used to see the convergence behavior and performance of plate element by 
comparing with the reference solution in the literature. 

Keywords: Free vibration; Natural frequency; First-order shear deformation theory; Finite 
element.  

 

 

1. PRELIMINARY 

The numerical method is one of the tools 
used to analyze plate elements, the finite 
element method is part of the numerical 
method that is often involved in analyzing 
plate elements. In the finite element plate 
analysis, the main thing to be achieved is 
how to generate plate elements that have 
high accuracy and convergence rate, fast 
computation time, and can be applied in 
various conditions. Shear locking is a 
challenge in developing plate elements that 
have good performance, this phenomenon 
occurs when length to thickness ratios (L/h) 

increase. Shear locking arises because the 
plate cannot qualify as a Kirchoff plate when 
the length to thickness ratios is increased, 
under these conditions the shear effect is not 
reduced when the plate becomes thin, the 
dependence of the plate element on its 
thickness will cause shear locking which 
results in inaccurate plate analysis results.  

Many researchers propose approaches to 
analyze plate elements, one of the concepts 
is the first-order shear deformation plate 
theory (FSDT), MITC3 (3-node triangular 
mixed interpolation of tensorial 
components) which was developed by Lee & 
Bathe Error! Reference source not found.] 
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is a plate element which was developed 
based on FSDT. MITC3 plate element was 
developed through the ''mixed interpolation 
of tensorial components'' (MITC) concept by 
Dvorkin and Bathe Error! Reference 
source not found.-Error! Reference 
source not found.], plate elements based on 
the MITC concept have successfully 
overcome shear locking in the case of square 
elements. The use of triangular elements 
attracts many researchers because 
triangular elements are the most efficient 
elements in discretizing elements, especially 
complex elements which are the weakness 
of square elements, one of the plate 
elements that uses a triangular element is 
MITC3.  

Many studies on plate elements using MITC3 
elements, especially in static cases, and 
research on improving the performance of 
MITC3 elements have also been conducted 
Error! Reference source not found.-
Error! Reference source not found.]. The 
research plate element using finite element 
in the case of free vibration have been 
carried out by several researchers and get 
good results Error! Reference source not 
found.Error! Reference source not 
found.Error! Reference source not 
found.]. In this paper we conducted free 
vibration analysis in the case of the skew 
plate, varying length to thickness ratios and 
skew angle, to see the effect of thickness and 
skew angles on the results of plate analysis, 
the vibration analysis is investigated using 
MITC3 elements to get the natural frequency 
through eigenvalue problem. The numerical 
analysis results will be compared with the 
free vibration analysis result using other 
elements or exact solutions, from the 
comparison it can be seen the level of 
convergence and performance of the MITC3 
elements.   

 

2. THEORETICAL BASIS 

Strain-Displacement Equation 

According to Reissner-Mindlin plate first-
order shear deformation plate theory Error! 
Reference source not found.], the 
displacement field can be declared as: 
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where u, v, w are displacements of the mid-
plane of the plate, βx and βy represent the 
rotations of the transverse normal about the 
x and y axes, respectively. 

The linear strains are given by: 
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The notation of βx,x, and βy,y state the first 
derivatives concerning x and y respectively 
of βx. w,x, and w,y  are the first derivatives 
concerning x and y respectively of vertical 
displacement w. 

 

Constitutive Equations 

According to hook law’s the stress in the 
plane can be declared as: 

    E  

 
(4) 

The shear stress is as follows: 

    G  

 
(5) 

The constitutive equations can be simplified 
as:
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(6) 

Where the matrix of material is: 
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(7) 

 

The notation of E declares the modulus of 
elasticity, v is Poisson’s ratio, and k= 5/6 is 
the shear correction factor.   

 

3. RESULT AND DISCUSSION 

The Formulation of MITC3 Plate 
Element  

MITC3 is the element proposed by Lee and 
Bathe Error! Reference source not 
found.], this element is based on the 
concept “mixed interpolation of tensorial 
components” (MITC) by Dvorkin and Bathe 
Error! Reference source not found.-
Error! Reference source not found.] 
which uses the tying points to get shear 
strain matrix. 

MITC3 element has 3 nodes with 3 degrees 
of freedom for each node, namely: wi 
(translation in the z-direction) βxi (rotation 

in the z-x plane), and βyi (rotation in the z-y 
plane). 

 

 

 

Figure 1. MITC3 elements with 3 nodes 
and 3 dof per node. 

 

Independent rotation field βx and βy  and 
displacement w are declared as: 
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Where Ni is the linear shape function at node-i. 

1 2 31 ; ;N N N     
 

(9) 
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The Bending Strain for MITC3 

The relationship between nodal variables 
and curvature  is: 

    b nB u    
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 (10) 

 

The Shear Strain for MITC3 

 

Figure 2. Tying point 

 

The tying point is chosen in the mid-points 
of sides 1-2, 1-3, and 2-3. Distribusi   is 

assumed constant ξ and   is assumed 

constant along . 
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(11) 

 

The value of βξ and βη, at the tying points, are 
the average of the values for each corner of 
the side, then:  
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Hence, the shear strain matrix is as below;
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(13) 

 

The Stiffness Matrix of MITC3 

The total energy due to bending and shear 
can be stated as: 

int int int
b s    (14) 

 

Where int , int
b , and int

s  are internal, 

bending, and shear energy respectively. 

The total stiffness due to bending, and shear 
can be expressed as: 

 

     b sk k k   (15) 

Where 

             ;
TT

b b b b s s s s

A A

k B H B dA k B H B dA  
 

(16) 

Free Vibration Analysis 

In buckling analysis, the thing to be achieved 
is to get a natural frequency value ω due to a 
given mass and get a mode shape. To get 
these two variables, it can be solved through 
the eigenproblem Error! Reference source 
not found.]: 
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       2 0nk m d    (17) 

 

Where 

 k is structural stiffness matrix, n is 

natural frequency,  m is a mass matrix, and 

 d is mode shape. 

 

Mass Matrix 

The external energy equation due to free 
vibrations on the plate is: 

 

  ext n nu m u   (18) 

 

Where is the nodal displacement vector nu

as follows: 

1 1 1 2 3 31 2 3n x y x y x yu w w w        (19) 

 

The mass matrix in the free vibration 
analysis of the plate can be expressed as: 

   
x yw β βm m m m       

 (20) 

 

The  wm matrix is a mass matrix of 

displacement in the z-direction. 

   w w wm
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The 
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yβ
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 matrices are the mass 

matrix of rotation in the x and y directions. 
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x xx y y y

b b

A A

M N N dA M N N dA
    

      
       (22) 

 

The mass matrix contains density which 
can be calculated using the following 
equation 

 

2( )    ; ( )  m bz dz z z dz       (23) 

 

The notation of m , and b declare the mass 

density related to the membrane and 
bending, wN , 

x
N , and 

y

N


, are shape 

function related to deflection and rotation 
respectively. 

Numerical Analysis 

Numerical analysis was performed on the 
fully modeled skew plate. Plate elements 

with boundary conditions hard simply 
supported (w=0, and βx=0) on AB and CD 
sides (Figure 3), and clamped (w=0, βx=0, 
and βy=0) on AD and BC sides. The plate 
has a mesh size N × N × 2 with N= 4, 8, 16, 
32, 64, and 128, these elements were 
analyzed at several skew angles of 30˚, 45˚, 
60˚, and 75˚, and have two lengths to 
thickness ratios of (L/h=5), and 
(L/h=1000). Validating the convergence 
behavior plate, the reference of natural 

frequency is  2 2/ /a h D      is given 

by Woo et al. Error! Reference source not 
found.]. 
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Figure 3. The modeling of the Rectangular plate with SCSC boundary conditions 

 

Table 1 The first five non-dimensional natural frequency  of SCSC skew plate with L/h=5. 

N × N × 2 
Mode 

number 

Skew Angle θ 

θ = 30˚ θ = 45˚ θ = 60˚ θ = 75˚ 

128 × 128 × 2 

1 5.4610 3.5596 2.7372 2.3681 

2 6.4304 4.6202 3.7811 3.3818 

3 7.4230 5.3542 4.4683 4.1095 

4 9.0747 7.0675 5.6500 4.7866 

5 9.1981 7.2253 6.2014 5.8832 

Woo et al. 
Error! 

Reference 
source not 

found.] 

1 5.5062 3.5683 2.7336 2.3605 

2 7.4286 5.3506 4.4573 4.0975 

3 9.1025 7.0200 5.6505 4.7792 

4 10.875 7.4414 6.1650 5.8785 

5 11.344 8.8146 7.9596 6.9815 

 

Table 2 The non-dimensional natural frequency   of SCSC skew plate with L/h=5. 

N × N × 2 
Mode 

number 

Skew Angle θ 

θ = 30˚ θ = 45˚ θ = 60˚ θ = 75˚ 

4 × 4 × 2 1 5.0891 3.8324 3.0922 2.7707 

8 × 8 × 2 1 5.4217 3.6004 2.8130 2.4592 

16 × 16 × 2 1 5.4167 3.5580 2.7525 2.3898 

32 × 32 × 2 1 5.4366 3.5549 2.7398 2.3731 

64 × 64 × 2 1 5.4522 3.5575 2.7375 2.3691 

128 × 128 × 2 1 5.4610 3.5596 2.7372 2.3681 

Woo et al. 
Error! 

Reference 

1 5.5062 3.5683 2.7336 2.3605 
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source not 
found.] 

 

  

 

  

 

 

 

Figure 4. Nn-dimensional natural frequency  of SCSC skew plate (L/h = 5) with skew angle θ 

= 30. 

 

The analysis in Table 1-2, noted that the 
natural frequency of plate with ratio L/h = 5 
is convergence to the reference solution. 
Plate with mesh 4 × 4 × 2 until mesh 128 × 
128 × 2, the difference in mode 1 skew angle 
θ = 30˚ to reference solutions is 0.821% - 
7.576%, skew angle θ = 45˚ is 0.243% - 

7.410%, skew angle θ = 60˚ is 0.133% - 
13.118%, and skew angle θ = 75˚ is 0.324% 
- 17.377%.  Figure 4 shows that at θ = 30 
when the mesh is coarse, the largest 
difference with the reference solution 
occurs in mode 5, while the largest 
difference in the fine mesh occurs in mode 4. 
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Figure 5. Non-dimensional natural frequency  of SCSC skew plate (L/h = 5) with skew angle θ 

= 45. 

 

The natural frequency of skew plate with 
skew angle θ = 45˚ is smaller than a plate 
with skew angle θ = 30 of Figure 5. in fine 
mesh the smallest difference to the 

reference solution occurs in mode 1 which is 
0,243% and the biggest difference is 
23.370% in mode 3, the natural frequency 
difference between θ = 45˚ and θ = 30˚ is 
1.901. 
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Figure 6. Non-dimensional natural frequency  of SCSC skew plate (L/h = 5) with skew 

angle θ = 60. 

 

Figure 6 shows that the MITC3 elements 
converge to the reference solution in each 
mode. In fine mesh, skew plate θ = 60˚ has 

smaller natural frequency than θ = 45˚, the 
difference is 1,024, it occurs in mode 5, the 
difference in mode 5 to reference solutions 
is 22.008%, and mode 1 is 0.133%. 

 

  

 

  

Figure 7. Non-dimensional natural frequency  of SCSC skew plate (L/h = 5) with skew 

angle θ = 75. 

 

The analysis depicts that the natural 
frequency of skew plate θ = 75˚ has a 
smaller natural frequency than θ = 60˚, and 
each mode converges to the reference 

solution in Fig 7. Furthermore, the analysis 
of the skew plate in (L/h=5) obtained that 
increasing skew angle θ caused a decrease 
in the value of natural frequency. 
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Table 3 The first five non-dimensional natural frequency  of SCSC skew plate with L/h=1000. 

2N × N × 2 
Mode 

number 

Skew Angle θ 

θ = 30˚ θ = 45˚ θ = 60˚ θ = 75˚ 

128 × 128 × 2 

1 9.7504 5.3086 3.7455 3.1115 

2 13.912 8.4688 6.5147 5.7489 

3 19.077 12.497 9.4268 7.5668 

4 24.116 13.887 10.219 9.5380 

5 27.156 17.037 13.965 11.362 

Woo et al. 
Error! 

Reference 
source not 

found.] 

1 10.124 5.3653 3.7505 3.1082 

2 14.135 8.4885 6.5128 5.7455 

3 19.713 12.565 9.4513 7.5606 

4 25.735 14.084 10.220 9.5315 

5 28.226 17.271 13.980 11.346 
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Figure 8. Non-dimensional frequency  of SCSC skew plate (L/h = 1000) according to skew 

angle. 

 

The analysis in Table 3 dan Figure 8, MITC3 
element convergence to the reference 
solution.  natural frequency with ratio L/h = 
1000, mesh 32 × 32 × 2 until mesh 128 × 128 
× 2, the difference in mode 1 skew angle θ = 
30˚ to reference solutions is 3.690 – 1.455%, 
skew angle θ = 60˚ is 0.892% - 1.057%, skew 
angle θ = 60˚ is 0.135% - 2.526%, and skew 
angle θ = 75˚ is 0.106% - 4.586%. from it 
result, it shows increasing skew angle θ 
caused an decrease in the difference to the 
reference solution. 

In addition, skew plate with ratio L/h = 1000 
has bigger natural frequency value than 
plate L/h = 5, at mesh 128 × 128 × 2 and θ = 
30˚ the difference in mode 1 plate L/h = 
1000 to plate L/h = 5 is 4.2894, skew angle θ 
= 45˚ is 1.7490, and skew angle θ = 60˚ is 
1.0082, and skew angle θ = 75˚ is 0.7434.  

 

4. CONCLUSION 

Free vibration analysis using one of the 
FSDT elements was conducted, the analysis 
was carried out on the skew plate, the result 
shows MITC3 element convergence to 
reference solution. Natural frequency value 
depends on length to width ratios L/h and 
skews angles θ, increasing the L/h ratio 
caused an increase in the value of natural 
frequency, and increasing skew angle 
caused a decrease in the frequency. Due to 
the accuracy and simplicity of this element, 
it conclude MITC3 element can be used to 
solve the eigenvalue problem. 
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