

THREE ARM UNSIGNALIZED INTERSECTION ON JALAN PERJUANGAN – JALAN KALIABANG BABELAN, NORTH BEKASI

Ardhan Rizakdy Fauzan¹, Harwidyo Eko Prasetyo², Andika Setiawan³, Irnanda Satya Soeratmodjo⁴

¹Civil Engineering Study Program, Muhammadiyah Jakarta University, Jl. Cempaka Putih Tengah 27, Indonesia

Email: ardanrizaldy01@gmail.com

²Civil Engineering Study Program, Muhammadiyah Jakarta University, Jl. Cempaka Putih Tengah 27,

Indonesia

Correspondence email: harwidyo.eko@umj.ac.id

³Civil Engineering Study Program, Muhammadiyah Jakarta University, Jl. Cempaka Putih Tengah 27,

Indonesia

Email: andika.setiawan@umj.ac.id

⁴Civil Engineering Study Program, Muhammadiyah Jakarta University, Jl. Cempaka Putih Tengah 27,

Indonesia

Email: irnanda.satya@umj.ac.id

Received August 2, 2022 | Accepted September 24, 2022

ABSTRACT

The intersection of Jalan Perjuangan - Jalan Kaliabang Babelan, North Bekasi is experiencing high traffic flow. It is because the intersection area is a shopping area and a residential area so that traffic jams often occur during busy traffic jams. This research aims to see the degree of saturation and delay at the research location. This research was conducted using a method based on MKJI 1997. The results of the analysis in the morning, the maximum flow that occurs on weekdays is 5533.7 pcu / hour, the minimum flow on holidays is 3982.2 pcu / hour with the degree of saturation on working day in the morning is equal to 1.18, and the degree of saturation in morning on holidays is 1.30 with a delay in morning in holidays is 36.1 sec / pcu, the delay in morning on working day is 5.7 sec / pcu. The results of the analysis during the day that the maximum flow occurs on holidays is 3905.6 pcu / hour, the minimum flow on working day is 3551.9 pcu / hour with the degree of saturation on holiday is 1.11, the degree of saturation on weekdays in the afternoon is 0.83 with a delay on holiday is 26.97 sec / pcu, a delay on working day is 13.48 sec / pcu. The results of the analysis in the afternoon the maximum flow occurs on weekdays of 6304.8 pcu / hour, the minimum flow on holidays is 5869.1 pcu / hour with the degree of saturation on working day is 1.84, the degree of saturation on holidays is 1.55 with a delay on working day is 0.74 sec / pcu, and delay on holidays is 1.08 sec / pcu

Keywords: T-intersection, road capacity, degree of saturation

1. PRELIMINARY

The development of transportation in the city of Bekasi has an impact on increasing

the flow of people, goods, and services. It also demands an increase in transportation facilities and infrastructure in the city of Bekasi. The increase in the number of vehicles that is not matched by the development of infrastructure will lead to conflicts on roads, especially at intersections or roundabouts. Now days, on the road to downtown Bekasi at busy hours there is often a traffic rush that influence the road performance.

Bekasi is part of the Jabodetabek Metropolitan Area, with a population of Bekasi in 2020 of 3,083,644 people (Central Statistics Agency Report 2020).

The intersection is a critical area on a road, which is a point of conflict and place of congestion due to the meeting of two or more segments.

The T-intersection of Jl. Perjuangan – Jl. Kaliabang Babelan, Bekasi Utara is the meeting point of the road segments among Jl. Perjuangan / Musholla Nurul 2 lines from the North, Jl. Kaliabang / Kenzi Motor 2 lines from the East to the West, Jl. Lingkar Utara / Bintang Sport Center 2 lines from the East to the West. Its parts of Bekasi regency that connect to the city centre. At the peak hours often occurs delays and vehicle queue because there is no sidewalk for pedestrian and people use driving to do the commuting activities.

Based on the situation, T-intersection at Jl. Perjuangan – Jl. Kaliabang needs attention by providing road infrastructure that help to solve traffic problems with the degree of saturation >0,85 (saturated) to avoid conflicts and reduce the number of accidents that occur at the intersection. One of the efforts is to reduce the width of the shoulder of the road, to widen the road segment. The other's alternative is using the traffic signal on the T-intersection at Jalan Perjuangan – Jalan Kaliabang Babelan, North Bekasi.

Therefore, it is necessary to conduct the research that specifically discuss about the unsignalized T-intersection of Jalan Perjuangan - Jalan Kaliabang to determine the performance of the intersection. So, it is expected that the T-intersection can serve traffic flow optimally and the road users who pass at the intersection will feel safe.

2. THEORETICAL BASIS

Intersection is roads meeting from a transverse direction where vehicles intersect. The problems that exists at intersection are the capacity of roads and flow of vehicle. It is because increases the volume of vehicles and other road users such as pedestrians, sidewalks, vehicle parking and buildings. The intersection requires regulation in order to avoid and minimize conflicts or problems that may arise in the intersection area.

There are several terms used for unsignalized intersections, namely:

Geometric conditions

In sketching a good geometric pattern, an intersection should be described clearly and in detail with information about curbs, road widths, shoulder widths, and medians. At the intersection of the major road approach, the road that is considered the most important, for example the road with the highest functional classification, is given the notation A and B, and for the minor road approach given the notation C and D and made clockwise.

Environmental conditions

Environmental conditions are adjusted to the real facts that will affect the performance of an intersection. Environmental conditions consist of City Size Class, Road Environment Type and Side Barrier Class.

Traffic conditions

Traffic condition input data consists of three parts, including describing traffic conditions, traffic flow sketches and traffic input variables which are inputted into the USIG I form as described below:

- 1. Periods and questions (alternative).
- 2. A sketch of the traffic flow depicting the various movements. Traffic flow in units of vehicles/hour. If traffic flow is in Daily Traffic or Average Annual traffic, the factor for convection to hourly flows must be recorded.
- 3. Traffic composition is recorded.
- 4. The flow of non-motorized vehicles is recorded.

3. RESEARCH METHOD

The method used in this research are guided by the 1997 Indonesian Road Capacity Manual (MKJI) method. In this study at the location of the Unsignalized T-Intersection on Jalan Boulevard – Jalan Kaliabang Babelan, North Bekasi, that connecting Bekasi Regency with Bekasi city center which has been clarified in UU No. 22 of 2009 that concern about road traffic and transportation has a strategic role in supporting development and national integration as part of efforts to promote public welfare. Use of traffic lights to reduce accidents on vehicles at unsignalized intersections so it become signalized intersections.

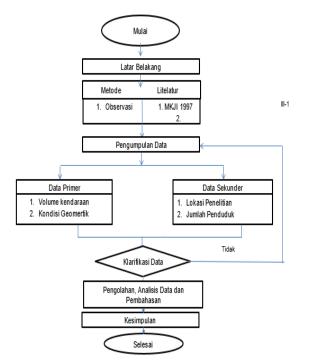


Figure 1. Flowchart of the study

This research was conducted in 3 zones, the direction of the Nurul Ghoir Mosque, Kenzi Motor and the Bintang Sport Center which is a mall, office, and dining area that has been equipped with shop houses and parking lots for both motorbikes and cars.

Based on the data that will be obtained from the survey, includes:

1. Traffic Volume

- 2. Geometric Condition
- 3. Environmental Conditions

The data that will be taken at the research site, then processed into Microsoft Excel format so that it can be stored and understood into the form of tables and graphs for analysis.

The steps are as follows:

- 1. Data on traffic volume are tabulated with 15 minutes intervals, then converted to units of pcu/hour.
- 2. Data on geometric conditions at the research location as discussed.
- 3. Data on environmental conditions as discussed.
- 4. The data that has been obtained is arranged in the form of tables and analyzed using Microsoft Excel application to find out the percentage of capacity, adjustment factors, degrees of saturation, delays, and queuing opportunities at the location.

The effective time that has been determined in conducting the research is Monday, Thursday, and Saturday, for the implementation at the research site to be carried out in October 2020. Those days were chosen because they represent working days I & II and holidays. Data collection at the research site includes the morning activities of people working and in afternoon is taken because the the community has finished carrying out work and other activities.

Quantitative Analysis Techniques is a technique used to analyze quantitative information (data that can be measured, tested and informed in the form of equations and tables).

4. **RESULTS AND DISCUSSION**

Site observations were carried out in three sections of Jalan Perjuangan / Musholla Nurul Ghoir to the north, approach, and exit. Jalan Kaliabang / Kenzi Motor to the east, approach, and exit. North Ring Road/Bintang Sport Center to the west, approach, and exit. Geometric data collection of roads, vehicle volume in the morning, afternoon, and evening at 06.00-08.00 WIB, 11.30-13.30 WIB, and 16.00-19.00 WIB, and environmental conditions.

General Data and Geometric Condition of Urban Roads

- 1. Province : West Java
- 2. Regency : Bekasi
- 3. District : Babelan
- 4. Population: 3.083 million in 2020 based on the Central Statistics Agency (BPS) Bekasi City 2020.
- 5. Road lines: four-divided (4/2D).
- 6. Road segments: Jalan Perjuangan / Musholla Nurul Ghoir to the north, approach, and exit. Jalan Kaliabang / Kenzi Motor to the east, approach, and exit. North Ring Road/Bintang Sport Center to the west, approach, and exit.
- 7. Segment length: 100 meters
- 8. Road Section Width: 6.9 meters to the north, 12.2 meters to the east and 14.7 meters to the west.

Volume of vehicle data

The survey is carried out to determine the volume of vehicles that pass through three sections Jalan Perjuangan / Musholla Nurul Ghoir to the north, approach, and exit. Jalan Kaliabang / Kenzi Motor to the east, approach, and exit. North Ring Road/Bintang Sport Center to the west, approach, and exit. Geometric data collection of roads, vehicle volume in the morning, afternoon, and evening at 06.00-08.00 WIB, 11.30-13.30 WIB, and 16.00-19.00 WIB.

The major road is the part of the approach of the intersection that has a larger traffic flow, and the minor road is the part of the approach of the intersection that has a smaller traffic flow. In this study, the classification of major roads is in the west and east directions while the classification of minor roads is in the north.

Table	1.	Volume	of	vehicle	on	Jalan
Perjuar	ngar	n / Mushol	la N	urul Gho	ir	

Wakte	Arab	JENIS K	ENDAF	JENIS KENDARAAN/15MEN							
		MC	L¥	нү	UM						
	BELOK KIR	91	16	0	0						
6.00 - 06.1	LURUS	-	-	-	-						
	LOK KANA	54	17	0	3						
	BELOK KIR	45	11	0	0						
6.15 - 06.3	LURUS	-	-	-	-						
	LOK KANA	62	24	0	2						
	BELOK KIR	50	14	0	0						
5.30 - 06.4	LURUS	-	-	-	-						
	LOK KANA	76	15	0	2						
	BELOK KIR	85	13	0	0						
5.45 - 07.0	LURUS	-	-	-	-						
	LOK KANA	86	17	0	2						
	BELOK KIR	55	8	0	0						
7.00 - 07.1	LURUS	-	-	-	-						
	LOK KANA	83	28	0	0						
	BELOK KIR	57	10	0	0						
7.15 - 07.3	LURUS	-	-	-	-						
	LOK KANA		29	0	0						
	BELOK KIR	48	4	0	0						
7.30 - 07.4	<u> </u>	-	-	-	-						
	LOK KANA		24	2	0						
	BELOK KIR	57	7	0	0						
7.45 - 08.0	LURUS	-	-	-	-						
	LOK KAN/	81	25	0	1						

Source: Analysis results

Table 2. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

Wakta	JENIS KENDAR	JENIS KENDARAAN/15MENIT				SMP/15MENIT					
	HC	1.9	HŦ	0.5	1	1.3	JUMLAH	MP/JA			
06.00-06.15	145	33	0	72.5	33	0	105.5				
6.15-06.30	107	35	0	53.5	35	0	\$8.5				
06.30-06.45	126	29	0	63	29	0	92				
06.45-07.00	171	30	0	\$5.5	30	0	115.5	401.9			
07.00-07.15	138	36	0	69	36	0	105	40			
07.15-07.30	134	39	0	67	39	0	106	418.5			
07.30-07.45	131	28	2	65.5	28	2.6	96.1	422.6			
07.45-08.00	138	32	0	69	32	0	101	408.1			
JUMLAH	1090	262	2	545	262	2.6	809.6	2051.1			

Source: Analysis results

Figure 2. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

Based on Table 2 and Picture 4.6, traffic flow on Jalan Perjuangan / Musholla Nurul Ghoir towards North approach is highest at 06.45 - 07.45 with 422.6 pcu/hour and the lowest at 06.00 - 07.00 with 401 pcu/hour.

Table	3.	Volume	of	vehicle	on	Jalan
Perjuar	ngan	Musholla	ı Nu	rul Ghoir		

Wakte	Arab	JENIS I	ENDAF	BAAN/1	5MEN
		MC	LV	нγ	UM
	BELOK KIR	35	12	0	0
1.30 - 117	LURUS	-	-	-	-
	LOK KAN/	78	16	0	1
	BELOK KIR	31	10	0	0
1.45 - 12.0	LURUS	-	-	-	-
	LOK KANA	87	17	0	0
	BELOK KIR	44	10	0	0
2.00 - 12.	LURUS	-	-	-	-
	LOK KANA	72	17	0	2
	BELOK KIR	65	13	0	0
2.15 - 12.3	LURUS	-	-	-	-
	LOK KANA	62	22	1	0
	BELOK KIR	46	3	0	0
2.30 - 12.4	LURUS	-	-	-	-
	LOK KANA	73	13	0	0
	BELOK KIR	20	12	0	0
2.45 - 13.0	LURUS	-	-	-	-
	LOK KAN/	74	21	0	0
	BELOK KIR	45	10	0	0
3.00 - 13.	LURUS	-	-	-	-
	LOK KAN/	77	17	0	0
	BELOK KIR	48	10	0	0
1.15 - 13.	LURUS	-	-	-	-
	LOK KANA	76	15	0	0

Source: Analysis results

Table 4. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

	HIS KEH	DARAA	H/15ME		SMP/1	SMENIT		MP/JA
Waktu	HC	L.Ŧ	HŦ	0.5	1	1.3	JUMLAH	
11.30 - 11.45	113	28	0	56.5	28	0	\$4.5	
11.45 - 12.00	118	27	0	59	27	0	86	
12.00 - 12.15	116	27	0	58	27	0	85	
12.15 - 12.30	127	35	1	63.5	35	1.3	99.8	355.3
12.30 - 12.45	119	16	0	59.5	16	0	75.5	346.3
12.45 - 13.00	94	33	0	47	33	0	80	340.3
13.00 - 13.15	122	27	0	61	27	0	88	343.3
13.15 - 13.30	124	25	0	62	25	0	\$7	330.5
JUMLAH	933	218	1	466.5	218	1.3	685.8	1715.7

Source: Analysis results

Figure 3. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

Based on Table 4 and Figure 3, traffic flow on Jalan Perjuangan / Musholla Nurul Ghoir towards North approach is highest at 11.30 –

12.30 with 355,3 pcu/hour and the lowest at 12.30 - 13.30 with 330,5 pcu/hour.

Table 5.Volume of vehicle on JalanPerjuangan / Musholla Nurul Ghoir

		JENIS	KENDA	RAAM/15	MEHIT
Wakta	Arak	мс	LŦ	HŦ	UH
	BELOK KIRI	59	4	0	0
5.00 - 16 .3	LURUS	-	-	-	-
	LOK KANA	\$1	12	0	2
	BELOK KIRI	37	5	0	0
15 - 16.	LURUS	-	-	-	-
	LOK KANA	115	16	0	1
	BELOK KIRI	70	9	0	0
30 - 16	LURUS	-	-	-	-
	LOK KANA	123	30	0	0
	BELOK KIRI	36	*	0	0
.45 - 17.	LURUS	-	-	-	-
	LOK KANA	201	22	0	1
	BELOK KIRI	77	11	0	0
.00 - 17.3	LURUS	-	-	-	-
	LOK KANA	109	22	0	3
	BELOK KIRI	80	6	0	0
15 - 17.3	LURUS	-	-	-	-
	LOK KANA	95	10	0	0
	BELOK KIRI	59	14	0	0
.30 - 17/	LURUS	-	-	-	-
	LOK KANA	167	19	0	0
	BELOK KIRI	37	15	0	0
45 - 18.	LURUS	-	-	-	-
	LOK KANA	153	20	0	0
	BELOK KIRI	55	6	0	0
.00 - 18.1	LURUS	-	-	-	-
	LOK KANA	84	13	0	0
	BELOK KIRI	62	10	0	0
15 - 18.		-	-	-	-
	LOK KANA	75	20	0	0
	BELOK KIR	33	6	ò	0
30 - 18		-	-		-
	LOK KANA	118	12	0	0
	BELOK KIRI	46	11	ŏ	ŏ
.45 - 190			-		-
	LOK KANA	110	6	0	0

Source: Analysis results

Table 6. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

Wakta	NIS KENI	DARAAN	1/15ME		MP/JA			
	HC	LŦ	HŦ	0.5	1	1.3	JUMLAH	
16.00 - 16.15	140	16	0	70	16	0	86	
16.15 - 16.30	152	21	0	76	21	0	97	
16.30 - 16.45	193	39	0	96.5	39	0	135.5	
16.45 - 17.00	237	30	0	118.5	30	0	148.5	46
17.00 - 17.15	186	33	0	93	33	0	126	50
17.15 - 17.30	175	16	0	\$7.5	16	0	103.5	513.
17.30 - 17.45	226	33	0	113	33	0	146	52
17.45 - 18.00	190	35	0	95	35	0	130	505.
18.00 - 18.15	139	19	0	69.5	19	0	\$8.5	46
18.15 - 18.30	137	30	0	68.5	30	0	98.5	46)
18.30 - 18.45	151	18	0	75.5	18	0	93.5	410.
18.45 - 19.00	156	17	0	78	17	0	95	375.
JUMLAH	2082	307	0	1041	307	0	1348	423

Source: Analysis results

Figure 4. Total volume of vehicle on Jalan Perjuangan / Musholla Nurul Ghoir

Based on Table 6 and Figure 4 traffic flow on Jalan Perjuangan / Musholla Nurul Ghoir towards North approach is highest at

16.30 - 17.30 with 513,5 pcu/hour, and the lowest at 18.00 - 19.00 with 375,5 pcu/jam.

Side Obstacles Analysis

Determining the class of side obstacles can be seen from the four types that effect the side obstacles. Its occurrences in every 200 meters per hour as follows:

Tabel 7. Side obstacle

lan Kaki	
	245
daraan Berhenti	142
daraan Keluar Masuk	< 76
daraan Lambat	56
	daraan Keluar Masuk daraan Lambat

SFC = PED x 0,5 + PSV x 1,0 x ELV x 0,7 x SMV x 0,4

SFC = (245 x 0,5) + (142 x 1,0) + (76 x 0,7) + (56 x 0,4) SFC = 340

Table 8. Cla	ass o	of Side Obstacles	
Kelas Hambatan	Kode	Jumlah berbobot kejadian per 200	Kondisi khusus
Samping (SFC)		meter per jam (dua sisi)	
Sangat Rendah	VL	<100	Daerah Pemukiman
			: jalan dengan jalan
			samping
Rendah	L	100 – 299	Daerah pemukiman
			:beberapa
			kendaraan umum
Sedang	М	300 - 499	Daerah Industri :
			Beberapa toko di
			sisi jalan
Tinggi	Н	500 - 899	Daerah Komersil :
			Aktifitas sisi jalan
			Tinggi
Sangat Tinggi	VH	>900	Daerah Komersil :
			Dengan aktifitas

Source: MKJI, 1997.

The results of the side obstacles analysis obtained the value of SFC = 340, the frequency of the weights was between the values of 300-499 for the side resistance class which was at the service level M, which was Medium.

Traffic Flow at the Intersection

The traffic flow on weekdays at the intersection Jalan Perjuangan – Jalan Kaliabang Babelan, North Bekasi in the morning.

Tabel 9. Total volume of approach vehicles at unsignalized intersection on Working Day I.

	PAGI												
	E	Bolak Kiri (Kondfjam)		Lurur (K	ondfjam)		B	olokKana	n (Kondfja	m)	Tatal
Kaki Simpana													
	MC	LŸ	HŸ	UM	MC	LV	HV	UM	MC	LV	HV	UM	
Utara	245	35	Ó	¢	•	•			329	98	Ż	2	711
Timur					2,417	896	24	14	248	737	16	6	4358
Barat	219	559	23	6	1730	635	24	14)				3210
Tatal	464	594	23	6	4147	1531	48	28	577	\$35	18	\$	\$279

Table 10. Traffic flow data of the unsignalized intersection on the Working Day I.

KOMPOSISILALULINTAS	ABAH	LVX		HV2		MCZ		Faktro	awb	Faktor-k
ARUSTALULINTAS		Kondara	an ringan LV	Kondaraa	n ringan L	Kondaraa	n ringan L ⁱ	Sopor	la Motor M	10
Pondokat		omp	1	omp	1,3	omp	0,5	Kondaraan	bormatar	total MV
		kondijam	smpljam	kondfjam	smptjam	kondijam	smpłjam	kondfjam	smpłjam	Raria bolak
		3	4	5	6	7	\$	9	10	11
JI.Minor Utara	LT	35	35	0	0	245	122.5	280	157.5	0.37269
	ST	•		•		•			•	
	RT	98	98	2	2.6	329	164.5	429	265.1	0.62731
	Total	133	133	2	2.6	574	287	709	422.6	
Jl.Mayor Timur	LT				•		•			
	ST	896	896	24	31.2	2417	1208.5	3337	2135.7	
	RT	737	601	16	20.8	248	124.0	1,001	745.8	0.26
	Total	1633	1497	40	52	2665	1332.5	4338	2881.5	
JI.Mayor Barat	LT	559	559	23	29.9	219	109.5	801	698.4	0.31324
	ST	635	635	24	31.2	1730	865	2389	1531.2	
	RT	•	•		•	0	0		•	
	Total	1194	1194	47	61.1	1949	974.5	3190	2229.6	
JI. Mayor Total Timur + B	arat	2827	2691	\$7	113.1	4614	2307	7528	5111.1	
	LT	594	594	23	29.9	464	232	1081	855.9	0.15467
	ST	1531	1531	48	62.4	4147	2073.5	5726	3666.9	
Mayor + Minor	RT	\$35	699	18	23	577	289	1,430	1,011	0.18
Mayor + Minor Total		2960	2824	89	115.7	5188	2594	\$237	5533.7	
				Ba	ria JI. Min	ar / (JI, Ut	ama + Mine	ar) Tatal	0.07637	UM/MV

Based on the research results, the traffic flow (Q) of the unsignalized intersection on the Working Day I is 5533.7 pcu/hour.

Capacity of unsignalized intersection on Jalan Perjuang – Jalan Kaliabang Babelan, North Bekasi for the working day I

The total capacity for all intersection arms is the product of the basic capacity (Co), namely the capacity under certain conditions (ideal), adjustment factors (F) and the effect of site conditions on capacity.

The form of the capacity model as follows:

C=Co x Fw x FM x FCS x FRSU x FLT x FRT x FMI

Table 11. Base capacity at unsignalized intersection

					Faktor Pa	nyaruaian Kaparitar (F)	_		
	Pilihan	Kaparitar Darar	Lobar PondokatRata Rata	Modian Jalan	Ukuran Kata	Hambatan Samping	Bølak Kiri	Belok Kanan	Raria Arur Minar	Kaparitar
J		C0	F۷	FM	FCS	FRSU	FLT	FRT	FMI	C
	Sonin	smpfjam								smptjam
	Pagi									
		12	13	14	15	16	17	18	19	20
		Tabol 2.11	Gambar 2.1	Tabol 2.13	Tabol 2.14	Tabel 2.15	Gambar 2.2	Gambar 2.3	Gambar 2.4	Rumur 2.2
		3200	0.9806	1.05	1.05	0.94	1.089019463	0.92156843	1.4356344	4685.49

Based on the results, the capacity value (C) at the unsignalized intersection is 4,685.49 pcu/hour.

Table 12. Approach width and type of intersection

		Lobar Pondokat (motor)								Jumlah Lajur		
	JUMLAH LENGAN	Jalan Mayor			Jalan Minor			Rata-	Jun	Tipo		
PILIHAN	SIMPANG							Rata WR	Jalan		Simpaną	
		WA	₩c	WAC	We	W۵	WBD		Minar	Jalan Mayor		
	1	2	3	4	5	6	7	\$	9	10	11	
1	3	7.35	6.1	6.725	3.3	0	1.65	4.1875	2	4	324	

Degree of Saturation (DS) at the unsignalized intersection of Jalan Perjuangan – Jalan Kaliabang Babelan in North Bekasi on the working day I.

The degree of saturation (DS) can be calculated as follows:

- DS = Qsmp/C
 - = 5,533.7/4,685.49
 - = 1,81

Based on the results of the research, the degree of saturation (DS) at the unsignalized intersection is 1.81. It means that the traffic performance has delays on the intersection with the level of service is E, which is an unstable flow condition. The traffic performance at the intersection is at level of service F that the traffic flow is hampered.

Tabel 13. Traffic performance

						PAGI					
	Arus LakuLintas (D)	Derajat Kejenuhan	Sasaran	LOS (Level of Service) dengan Derajat Kejerruhan	Tundaan Lalu Lintas Simpang	Tundaan Jalan Mayor	Tundaan Jalan Minor	Tundaan Geometrik	Tundaan Simpang	LOS (Level of Service) dengan Tundaan simpang	Peluang Antrian
PLIHAN		DS= Q/C			DT1	DTMA	DTM	(DG)	(0)		QP%
	smpljam				detIsmp	detIsmp	detijam	det/smp	det/smp		%
	21	22	23	24	25	26	27	28	29	30	31
		Rumus 2.4		Tabel 2.18	Gambar 2.5	Gambar 2.6	Rumus 2.5	Rumus 2.6	Rumus 2.7	Tabel 2.17	Gambar 2.7
Senin	5533.7	118	DS>0.85	F	32,15952983	17, 11698004	214.09038	4	36.1595298	Ε	56-183

Table 14. Recapitulation of the vehicles flow at the intersection of Jalan Perjuang – Jalan Kaliabang Babelan, North Bekasi in the morning.

	PAGI													
	Arus LaluLintas (Q)	Derajat Kejenuhan	Sasaran	LOS (Level of Service) dengan Derajat Kejenuhan	Tundaan Lalu Lintas	Tundaan Jalan Mayor	Tundaan Jalan Minor	Tundaan Geometrik	Tundaan Simpang	LOS (Level of Service) dengan Tundaan simpang	Peluang Antrian			
PILIHAN		DS = Q/C			DT1	DTMA	DTMI	(DG)	(D)		QP%			
	smp/jam				det/smp	det/smp	det/jam	det/smp	det/smp		%			
	21	22	23	24	25	26	27	28	29	30	31			
		Rumus 2.4		Tabel 2.18	Gambar 2.	Gambar 2.0	Rumus 2.5	Rumus 2.6	Rumus 2.7	Tabel 2.17	Gambar 2.7			
Senin	5533.7	1.18102806	DS > 0.85	F	32.15953	17.11698	214.0904	4	36.15953	E	56-183			
Kamis	5329.8	1.54510414	DS > 0.85	F	1.00143	1.098245	0.585877	4	5.00143	В	102 - 341			
Sabtu	3982.2	1.3030956	DS > 0.85	F	1.710471	1.814999	1.363971	4	5.710471	В	70 - 229			

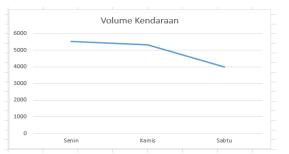


Figure 5. Recapitulation of the vehicles flow

The peak traffic flow at the intersection of Jalan Perjuang – Jalan Kaliabang Babelan, North Bekasi in the morning, occurred on Working day I at 5533.7 pcu/hour, while the lowest was on holidays at 3982.2 pcu/hour.

5. CONCLUSION

- The value of the degree of saturation (DS) for the maximum flow on the working day I in the morning is 1.18. Based on the value of the degree of saturation (DS), the traffic performance on urban road has level of service F with obstructed flow, low speed, volume below the capacity, long queues, and long obstacles.
- 2. The delays on the intersection for the maximum flow on the working day I in the morning is 36.1 sec/pcu. The minimum flow in the morning on the holiday is 5.7 sec/pcu.
- 3. The probability of queuing for the maximum flow on the working day I in the morning is 56 183%. The probability of queuing for the minimum flow in the morning on the holiday is 70 229%

REFERENCES

- [1] Akcelik. R. 2002. "*aaSIDRA User Guide*". Akcelik & Associates Pty Ltd. Victoria Australian
- [2] Badan Pusat Statistik. (2020). "*Statistik Kota Bekasi Tahun 2020*". Bekasi : BPS Kota Bekasi.

- [3] Direktorat Jenderal Bina Marga, Simpang TakBersinyal.1997. "*Manual Kapasitas Jalan Indonesia (MKJI).* Departemen Pekerjaan Umum.
- [4] Direktorat Bina Sistem Lalu Lintas dan Angkutan Kota (1997), "Manual Kapasitas Jalan Indonesia", Jakarta.
- [5] Mahardika, Riyana Bani. (2019). *"Analisis Simpang Tak Bersinyal Tiga Lengan (Studi Kasus Jl. Gatot Subroto Jl. Kesatrian Purwokerto)"*. Purwokerto: Universitas Muhammadiyah Purwokerto. *Skripsi*.
- [6] Peraturan Menteri Perhubungan Nomor PM 96 Tahun 2015 Manajemen dan Rekayasa Lalu Lintas.
- [7] Rahmanto, Dwi Yuda. (2017). "Analisis Simpang Tiga Tak Bersinyal Kaliori-PatikRaja-Banyumas untuk 10 Tahun". Purwokerto: Universitas Muhammadiyah Purwokerto. Skripsi.
- [8] Undang undang Republik Indonesia No.22 Tahun 2009 Tentang Lalu Lintas dan Angkutan Jalan.
- [9] Undang undang Republik Indonesia No.22 Tahun 2009 pasal 93 Tentang Manajemen dan Rekayasa Lalu Lintas.