

International Journal of Civil Engineering and Infrastructure Vol. 2, No. 1, March 2022

THE EFFECT OF U-TURN ON TRAFFIC FLOW CHARACTERISTICS (A CASE STUDY: JENDRAL BASUKI RACHMAT ROAD, EAST JAKARTA)

Basit Al Hanif, Noviandi Putra Darsono

¹Civil Engineering Study Program, University of Muhammadiyah Jakarta, Jl. Cempaka Putih Tengah 27, Indonesia

Correspondence email: basit.alhanif@umj.ac.id

²Civil Engineering Study Program, University of Muhammadiyah Jakarta, Jl. Cempaka Putih Tengah 27, Indonesia

Email: noviandi.putra@staff.umj.ac.id

Received December 18, 2021 | Accepted February 02, 2022

ABSTRACT

The way to minimize traffic problems, especially the safety and comfort of roads is to build medians. The median as part of the road geometry is a physical separator of traffic lanes that serves to relieve traffic conflicts from the opposite direction. So, it improves traffic safety with a reversal facility, analyzes the average travel time of vehicles when making a U-turn, and analyzes the level of service on the Jendral Basuki Rachmat road. Therefore, this research aimed to determine the volume of traffic on Jenderal Basuki Rachmat road, determine the average speed of turning vehicles and determine the service level on Jalan Jenderal Basuki Rachmat Road. This research used the 1997 MKJI methodology. The research results explained that the largest volume of vehicles that make U-turns was 19966 vehicles/hour with a road service level of D. The average travel time of vehicles was 15.3 seconds with a queue length of 50 meters for a U-turn.

Keywords: U-Turn, Speed, Service Level

1. PRELIMINARY

Vehicle users expect convenient and safe facilities on the road network. The way to minimize the problem of traffic movement, especially the safety and comfort of roads is to build a median. In median planning, there is a median opening to simplify the vehicle to change the direction, such as a reversal movement or a U-turn movement. One effect of the U-turn motion is the speed of the vehicle slowing down or stopping.

Jendral Basuki Rachmat road is a road that is in front of the Basura Mall, Basura City apartments and the Gembrong market. This road is in Jatinegara, East Jakarta. Jendral Basuki Rachmat road, which is right in front of Basura Mall and Basura City Apartments, is a 4-lane, 2-way, and 2-turn road on the west before the intersection and on the east before the intersection.

The research objectives were:

- 1. To determine the effect of the U-turn facility on Jenderal Basuki Rachmat road on the traffic flow characteristics on Jenderal Basuki Rachmat road.
- 2. To find out the number of vehicles turning around at the U-turn facility on Jenderal Basuki Rachmat road.

3. To find out the average travel time of vehicles when making a U-turn on Jenderal Basuki Rachmat road.

2. THEORETICAL FRAMEWORK

Transportation

Transportation is the business and activity of transporting or bringing goods and/or people from one place to another.

Road

In the Act No. 38 of 2004 article 1 paragraph (4), the definition of road is land transportation infrastructure covering all parts of the road, such as complementary buildings and traffic equipment on the surface of the land and water, and above the water surface, except for railroads, lorries and cable roads.

In the Indonesian Highway Capacity Manual (1997), road types are divided into:

- 1. A two-lane two-way street without a median (2/2 UD).
- 2. A four-lane and two-way street.
 - a. Undivided / without median (4/2 UD).
 - b. Divide / by median (4/2 D).
- 3. A six-lane two-way street divided by a median (6/2 D).
- 4. One way street (1-3/1).

Table 1. Median Minimum Width

Planning Class		Standard Minimum Width (m)	Specific Minimum Width (m)
TYPE I	Class 1	2.5	2.5
	Class 2	2.0	2.0
TYPE II	Class 1	2.0	1.0
	Class 2	2.0	1.0
Class 3		1.5	1.0
	Class 3	1.5	1.0

Source: "Geometric Planning Standards for Urban Streets" (1992). Directorate General of Highways"

Table 2. Minimum Width of Median Opening
(raising/lowering)

Road	Minimum width (m)				
Function	Median	Inside Shoulder	Road- Edge		
Arteries	≥ 5,00	0,50	0,25		
Collector/ Local	≥ 4,00	0,50	0,25		

Source: Construction and Building Guidelines (2004), Department of Settlement and Regional Infrastructure.

Table 3. Minimum Distance Between Opening and Opening Width

Road Function	Out tov	c of vn	τ		
	Opening Distance (dl, km)		Opening Distance Opening (dl, km)		Opening
			Sub- urban	In town	(d ² , m)
Arteries	5	7	2.5	0.5	4
Collector	3	4	1.0	0.3	4

Source: Construction and Building Guidelines (2004) Department of Settlement and Regional Infrastructure.

Traffic Flow

Traffic flow is the number of motorized vehicles that pass the road and is measured in certain time intervals. Traffic volume is defined as the number of vehicles that passing a point on the highway for a unit of time.

The objectives of determining traffic volume include:

1. Determination of traffic flow on a road.

2. The tendency of road use.

3. Distribution of traffic on a road system.

In general, the traffic volume unit uses the Average Daily Traffic (abbreviated LHR).

Road Type:	Traffic Flow per	Emp		
One-way Street and divided road	lane (Vehicles/hour)	HV	MC	
Two Lane One Way (2/1)	0	1.3	0.40	
Four Lane One Way (4/2D)	≥ 1050	1.2	0.25	
Three Lane One Way (3/1)	0	1.3	0.40	
Six-lanes divided (6/2D)	≥ 1100	1.2	0.25	

Table 4. Emp Value for Divided and One-Way Urban Roads

Source: Indonesian Highway Capacity Manual (1997)

Vehicle Characteristics

Table 5. Description Of Passenger Car Unit (abbreviated PCU) Value

Transportation Type	Passenger Car Unit Value (pcu/hour)
Heavy vehicle (HV)	1.3
Light Vehicle (LV)	1.0
Motorcycle (MC)	0.5

Source: Indonesian Highway Capacity Manual (1997)

Capacity

Table 6. Base Capacity (Co) For Urban Road

No.	Road Type	Basic Capacity (pcu/hour)	Note
1.	Four lanes divided or one way	1650	per lane

No.	Road Type	Basic Capacity (pcu/hour)	Note
2.	Four-lane undivided	1500	per lane
3.	Two-lane undivided	2900	two- way total

Source: Indonesian Highway Capacity Manual 1997

Table 7. FCw Adjustment for the Effect of Traffic Lane Width on Urban Roads

Nb.	Road Type	Effective traffic lane width (Wc) (M)	FWC		
1.	Four-	Per	Lane		
	lanes	3,00	0,92		
	one-wav	3,25	0,96		
	street	3,50	1,00		
		3,75	1,04		
		4,00	1,08		
2.	Four-	Per	Lane		
	lanes	3,00	0,91		
	unuivideu	3,25	0,95		
		3,50	1,00		
		3,75	1,05		
		4,00	1,09		
3.	Two-	Per	Lane		
	lanes	5	0,56		
	unaividea	6	0,87		
		7	1		
		8	1,14		
		9	1,25		
		10	1,29		
		11	1,34		
Source: Indonesian Highway Canacity					

Source: Indonesian Highway Capacity Manual 1997

			-				
Direction Separator SP %-%		50- 50	60- 40	70- 30	80- 20	90- 10	100 -0
FCsp	Two- lanes 2/2	1.00	0.94	0.88	0.81	0.76	0.76
	Four- lanes 4/2	1.00	0.97	0.94	0.91	0.88	0.85

Table 8. FCsp Capacity adjustment factor for directional separator

Source: Indonesian Highway Capacity Manual 1997

Table 9. FCsf Adjustment Factor for the Effect of Side Friction and Curb-Friction Distance on Urban Road and Shoulder Capacity

Nb.	Road Type	Side Friction Class (SFC)	Adjustment factor for side friction and curb-barrier distance (Wk)			
			di	Curb-fr stance	iction Wk (n	ı)
			<0,5 M	1,0 M	1,5 M	>2M
1.	Four- lanes	Very low	0,95	0,97	0,99	01
	divide d	Low	0,94	0,96	0,98	1,00
	(4/2	Moderate	0,91	0,93	0,95	0,98
	DJ	High	0,86	0,89	0,92	0,95
		Very high	0,81	0,85	0,88	0,92
2.	Four -	Very low	0,95	0,97	0,99	1,01
	lanes undi vide d (4/2 UD)	Low	0,93	0,95	0,97	1,00
		Moderate	0,90	0,92	0,95	0,97
		High	0,84	0,87	0,90	0,93
		Very high	0,77	0,81	0,85	0,90

3.	Two- lanes	Very low	0,93	0,95	0,97	0,99
	undiv ided	Low	0,90	0,92	0,95	0,97
	(2/2	Moderate	0,86	0,88	0,91	0,94
	UD) or	High	0,78	0,81	0,84	0,88
	one way street	Very high	0,68	0,72	0,77	0,82
	0000000					

(Source: Indonesian Highway Capacity Manual 1997)

Table 10. FCcs Adjustment Factor for the
Effect of City Size on Urban Road Capacity

Nb.	City Size (Million Population)	Adjustment Factor for city size FCcs
1.	<0.1	0.86
2.	0.1-0.5	0.90
3.	0.5-1.0	0.94
4.	1.0-3.0	1.00
5.	>3.0	1.04

(Source: Indonesian Highway Capacity Manual 1997)

Speed

According to Hobbs (1995), speed is the main parameter to describe traffic flow and travel speed recognized in kilometers per hour (km/hour).

Degree of Saturation

The degree of saturation (DS) is the ratio of road flow to capacity as the main factor in determining the performance level of intersections and road segments. The DS value indicates whether the road segment has a capacity problem or not.

U-Turn

In general, the U-turn condition is used for the rotation of the vehicle. However, there are U-turns that are prohibited from being used, for example there are traffic signs with assistive tools such as chain iron stakes. It can be found on the freeway. The U-turn function is only for officers or during an emergency. According to the type of movement, U-Turn is divided into 3 types, namely single U-turn, double U-turn, and multiple U-turns.

Table 11.	Minimum	Width of	Median
Oper	ning Design	າ For U-Tu	ırn

Movement type		Mini Wid Vehi	imum th (n icles	Media n) F	an Op or D	ening esign
		Р	WB- 40	SU	BUS	WB- 50
		Ľ	esign V	Vehicl	e Leng	th
		5.7	15	9	12	16.5
Inside lane into outside lane		9	18	19	19	21
Inside lane into outside lane		6	15	15	16	18
Inside lane into outside lane		2	12	12	12	15

Side Friction

According to the 1997 Indonesian Highway Capacity Manual (abbreviated MKJI), side friction is the impact of side activities on the road segment on traffic roads, such as:

- 1. Pedestrians who walk or cross along a road segment.
- 2. Public transport and other vehicles that stop and park.
- 3. Motorized vehicles in and out of/to the land side/side of the road.
- 4. Slow moving traffic.

Table 12. FCsf Adjustment Factor for the Effect of Side Friction and Shoulder Width on Urban Road and Shoulder Capacity

				-		
Nb.	Road Type	Side Friction Class	Adjustment factor for side friction and shoulder width (FCsf)			
		(SFC)	Avera should (M)	ge der v	effeo vidth	ctive Ws
			<0,5M	1,0M	1,5 M	>2M
1.	Four- lanes	Very low	0.96	0.98	1.01	1.03
	divided	Low	0.94	0.97	1.00	1.02
	(4/2 D)	Moderate	0.92	0.95	0.98	1.00
		High	0.88	0.92	0.95	0.98
		Very high	0.84	0.88	0.92	0.96
2.	Four- lanes	Very low	0.96	0.99	1.01	1.03
	undivi	Low	0.91	0.97	1.00	1.02
	(4/2 UD)	Moderate	0.92	0.95	0.98	1.00
		High	0.87	0.91	0.94	0.98
		Very high	0.80	0.86	0.90	0.95
3.	Two- lanes	Very low	0.94	0.96	0.99	1.01
	undivi ded (2/2 UD) or	Low	0.92	0.94	0.97	1.00
		Moder ate	0.89	0.92	0.95	0.98
	one way	High	0.82	0.86	0.90	0.95
	street	Very high	0.73	0.79	0.85	0.91

Table 13. Side Friction Class and Shoulder
Width on Urban Road Capacity with
Shoulders

	biloulders			
Occurrence weighted frequency	Symbol	Side Friction Class		
А	В	С	D	
<50	Plantations/area s less developed, no activities	Very low	VL	
50-100	Few settlements and low activities	Low	L	
150-200	Countryside, settlement activities	Mode rate	М	
250-249	Countryside, some market activities	High	Н	
>350	Near cities, market/commer cial activities	Very high	VH	

(Source: Indonesian Highway Capacity Manual 1997)

Table 14. Occurrence weight for side friction

Pedestrian	Public transportati on or other vehicles stop	Vehicle entering or exiting the road side	Slow vehicle
	stop	side	
0.5	1.0	0.7	0.7

(Source: Indonesian Highway Capacity Manual 1997)

Road Service Level

The road service level is performance of roads or intersections size that is calculated based on the level of road users, speed, density, and obstacles that occur.

Service Level	Description	Degree of Saturation (DS)
A	Free flow conditions; low volume and speed	0.00-0.20
В	In the stable current zone. Speed slightly limited by traffic	0.20-0.44
C	In stable flow zone but speed controlled by traffic	0.45-0.74
D	Current Approaching unstable. Operation speed	0.75-0.854
E	Different - sometimes stops, volume	0.85-1.00
F	Low, volume below capacity, queue	>1.00

RESEARCH METHODS

Figure 1. Research methodology stages

3. RESULTS AND DISCUSSION

Traffic Volume

The total observation time was 4 hours per day for three days per point. Observations were conducted at 07.00 - 09.00 WIB, and 16.00 - 18.00 WIB.

Figure 1. Geometric U-Turn Jl. General Basuki Rachmat

Table 16. Traffic Volume Data for Weekday I (vehicle/hour)

Time	Number of (vehicles/hour) Jalan Basuki Rachmat Street			Vehicles Jenderal		
	East-	West		West-East		
	МС	LV	HV	МС	LV	HV
Weekd	lay I					
Morni	ng					
07.00- 08.00	4472	2922	97	2583	978	77
08.00- 09.00	2896	1106	62	2821	1304	77
Afterno	Afternoon					
16.00- 17.00	3444	926	79	3803	1009	92
17.00- 18.00	3424	1072	58	3828	1273	97

Source: Field survey

Figure 2. Traffic Volume Weekday I (vehicles/hour)

Time	Number of V (vehicles/hour) Jalan Je Basuki Rachmat Street			Veh Jene	icles deral		
	East-West			West	West-East		
	МС	LV	HV	МС	LV	HV	
Weeko	lay II						
Morni	Morning						
07.00- 08.00	2479	864	67	2398	1394	98	
08.00- 09.00	2882	1087	52	2562	878	93	
Aftern	oon						
16.00- 17.00	3292	800	89	3253	1334	106	
17.00- 18.00	3401	1023	92	3657	807	86	

Table 17. Traffic Volume Data for Weekday II (vehicles/hour)

Source: Field survey

Table 18. Traffic Volume Data for Weekday III (vehicles/hour)

Tim e	Number of (vehicles/hour) Basuki Rachmat St			of Jalan Street	Veh Jenc	icles leral	
	East-	West		West-East			
	МС	LV	HV	МС	LV	HV	
Week	Weekday III						
Morni	Aorning						
07.00- 08.00	2147	792	75	2173	1356	107	
08.00- 09.00	2474	1022	84	2367	923	86	
Afterno	Afternoon						
16.00- 17.00	3135	958	77	3325	877	82	
17.00- 18.00	3337	1104	84	4918	2898	119	

Source: Field survey

Figure 4. Traffic Volume Weekday III (vehicles/hour)

Tim e	Number of (vehicles/hour) Jalan Basuki Rachmat Street			Vehicles Jenderal		
	East-V	Nest		West-	East	
	МС	LV	HV	МС	LV	HV
Week	end					
Morn	ing					
07.00	2252	1267	71	2467	1543	62
08.00						
08.00	2397	1284	76	2444	1359	70
- 09.00						
Aftern	Afternoon					
16.00- 17.00	3357	1238	61	3182	1211	68
17.00- 18.00	3389	1312	58	3202	1351	62

Table 19. Traffic Volume Data for Weekend (vehicles/hour)

Source: Field survey

Figure 5. Traffic Volume Weekend (vehicles/hour)

Calculation of Vehicle Volume from vehicle/hour to smp/hour

- 1. Jenderal Basuki Rachmat Street
 - a. (West-East) Weekday I 08.00-09.00.

MC = $(4472 \times 0.5) = 1736 \text{ smp/hour}$

 $LV = (2922 \times 1,0) = 1322 \text{ smp/hour}$

HV = (97 x 1,3) =126,1 smp/hour

+

5284,1 smp/hour

b. (West-East) Weekday III 17.00-18.00.

MC =(4918 x 0,5) = 1959 smp/hour LV =(2898 x 1,0) = 1598 smp/hour

HV = $(119 \text{ x } 1,3) = \frac{154,7 \text{ smp/hour}}{154,7 \text{ smp/hour}} +$

5510,2 smp/hour

Traffic Volume Analysis

The highest traffic volume in the East-West direction on Jalan Jenderal Basuki Rachmat was 5284.1 pcu/hour and the West-East direction was 5510.2 pcu/hour. The peak hour volume in the East-West direction was the weekday I at 08.00-09.00, while the West-East direction was the weekday III at 17.00 - 18.00.

Road Capacity Data

The research location was a road segment which consisted of 4 lanes and 2 lanes.

Table 20. Geometric Data of Research Location

Research Location	Road Type	Road Width (m)	Median Width (m)	Side friction
Jl. Jendral Basuki Rachmat	4/2 D	14	2,5	High

Source: Field survey

Road Capacity Analysis

Table 21. Road Capacity Calculation

Research Location	Adjustment Factor					
	Co	Fcw	FCsp	FCsf	FCcs	
Jl. Jendral Basuki Rachmat	1650	1,00	1,00	0,97	1,04	

Source: Indonesian Highway Capacity Manual

Road Capacity Calculation

1. Jalan Jenderal Basuki Rachmat

Road sections 4/2 D obtained capacity per lane

C = Co x FCw x FCsp x FCsf x FCcs = 1650 x 1.00 x 1.00 x 0.96 x 1.04 = 1647,36 smp/hour.

With 4 lanes, the capacity was: $C = 4 \times 1664,52 = 6589,44 \text{ smp/hour.}$

Degree of Saturation

- 1. Jenderal Basuki Rachmat Street
 - 1. East-West

$$DS = \frac{Qsmp}{C} = \frac{5284.1}{6598.44} = 0,80$$

2. West-East

$$\frac{Qsmp}{DS = C} = \frac{5510.2}{6598.44} = 0,83$$

Analysis of Vehicles Doing U-Turns

Table 22. Number of Vehicles Doing U-Turns from East to West

	Number of	f Vehicles (vehicl	es/hour)	Total vehicles
Time	MC	LV	HV	that do U-turns
Weekday I				
Morning				
07.00-08.00	1167	755	27	1949
08.00-09.00	638	365	44	1047
Afternoon				
16.00-17.00	518	297	38	853
17.00-18.00	623	375	47	1045
Weekday II				
Morning				
07.00-08.00	428	261	43	732
08.00-09.00	709	359	29	1097
Afternoon				
16.00-17.00	496	256	38	790
17.00-18.00	637	393	27	1057
Weekday III				
Morning				
07.00-08.00	399	307	29	735
08.00-09.00	707	338	38	1083
Afternoon				
16.00-17.00	583	307	25	915
17.00-18.00	599	387	37	1023
Weekend				
Morning				
07.00-08.00	378	352	21	751
08.00-09.00	688	251	32	971
Afternoon				
16.00-17.00	594	301	28	923
17.00-18.00	596	392	33	1021

Source: Field survey

Vehicles that did the most U-turns from the East - West were on the weekday I at 08.00-09.00, namely 1949 vehicles.

T:	Number o	f Vehicles (vehic	les/hour)	Total vehicles that
Time	MC	LV	HV	do U-turns
	Weekd	lay I		
Morning			_	
07.00-08.00	681	304	28	1013
08.00-09.00	898	431	40	1369
Afternoon			_	
16.00-17.00	705	323	43	1071
17.00-18.00	885	446	28	1359
	Weekd	ay II		
Morning				
07.00-08.00	744	433	34	1211
08.00-09.00	747	290	31	1068
Afternoon				_
16.00-17.00	641	427	17	1085
17.00-18.00	895	178	37	1110
	Weekda	ay III		
Morning				
07.00-08.00	730	421	27	1178
08.00-09.00	716	305	36	1057
Afternoon			_	
16.00-17.00	789	288	27	1104
17.00-18.00	1039	910	47	1996
	Week	end		
Morning				
07.00-08.00	582	559	19	1160
08.00-09.00	738	632	25	1395
Afternoon				
16.00-17.00	590	463	24	1077
17.00-18.00	668	397	23	1088

Table 23. Number of Vehicles Doing U-Turns from West to East

Source: Field survey

Vehicles that did the most U-turns from the West - East were the weekday III at 17.00-18.00, namely 1996 vehicles.

Analysis of the Average Travel Time of Vehicles When Doing a U-turn

Table 24. Average Travel Time of Vehicles Doing U-Turns

Time	Average vehicle travel time (seconds)							
		East-West						
	07.00-08.00	08.00-09.00	16.00-17.00	17.00-18.00				
Weekday I	8,1	12,6	9,3	11,2				
Weekday II	7,1	12	11,2	7,7				
Weekday III	7,9	11,4	11,3	7,8				
Weekend	7,7	10,8	11,2	7,5				
Time	West-East							
	07.00-08.00	08.00-09.00	16.00-17.00	17.00-18.00				
Weekday I	11,3	14,9	11,7	14,7				
Weekday II	12,4	12,4	10,6	14,9				
Weekday III	12,1	11,9	13,1	15,3				
Weekend	12,2	11	10,8	14,5				

Source: Field survey

Figure 6. Average vehicle travel time (seconds) from East-West and West-East directions

The highest average travel time of vehicle turning on Jenderal Basuki Rachmat road from the East - West direction was 12.6 seconds on the weekday I at 08.00-09.00, while from the West - East direction was 15.3 on the weekday III at 17.00- 18.00.

Vehicle Speed When U-Turn

1.	Jenderal Basuki Rachmat Street (East-West)
	Length = 45 meter = 0.045 km
	Time = $12,6$ second = $0,0035$ hour
	Speed = $\frac{0.045}{0.0035}$ = 12,8 Km/hour
2.	Jenderal Basuki Rachmat Street (West-East)
	Length = 45 meter = 0.045 km
	Time = 15,3 second = 0,00425 hour
	Speed = $\frac{0.045}{0.00425}$ = 10,5 Km/hour

Vehicle Speed Analysis

The observations results revealed that the largest number of U-turn vehicles with 1-hour intervals was from the East - West direction on the weekday I at 08.00-09.00 namely 1949 vehicles, while from the West - East direction on the weekday III at 17.00-18.00, namely 1996 vehicles. The number of vehicles that did U-turns and the average maneuvering speed of vehicles that were less than 15 km/hour caused queues and affected the speed of vehicles on the Jenderal Basuki Rachmat road.

Vehicle Queue Length When U-Turn Table 25. Vehicle Queue Length When U-Turn

	Queue Length When Doing U-turn (Meter)						
Time		East-West					
	07.00 - 08.00	08.00 - 09.00	16.00 - 17.00	17.00 - 18.00			
Weekday I	25	11	17	14			
Weekday II	16	13	10	15			
Weekday III	14	10	11	12			
Weekend	6	9	10	10			
	West-East						
Weekday I	8	12	14	20			
Weekday II	7	13	16	19			
Weekday III	6	10	18	50			
Weekend	8	10	15	17			

Source: Field survey

Figure 7. Queue length when doing U-turns from East-West and West-East directions

The highest queue length for vehicles in the East-West direction was the weekday I of 25 meters, while in the West-East direction was the weekday III of 50 meters which was classified as severe queue conditions.

Road Service Level Using Ratio V/C Table 26. Road Service Level

Nb.	Location	Volume (V) (smp/hour)	Capacity (C) (smp/hour)	V/C	Service Level
1	Jalan Jenderal Basuki Rachmat	5510,2	6589,44	0,83	D

U-turn analysis

The observations results showed that the data on the number of vehicles doing Uturns on Jenderal Basuki Rachmat street. The highest number of vehicles doing Uturns could be seen in tables 4.7 and 4.8. At intervals of 1 hour, in the East - West

direction the highest number was the weekday I at 08.00-09.00, namely 1949 vehicles, while in the West - East direction was the weekday III at 17.00-18.00, namely 1996 vehicles. The number of vehicles that did U-turns and the average maneuvering speed of vehicles that were less than 15 km/hour caused queues and affected the speed of vehicles on the Jenderal Basuki Rachmat street. The highest vehicle queue length could be seen in table 4.10, which was 50 meters in the West-East direction at 17.00-18.00. Based on the analysis of the effect of the U-turn on the Jendral Basuki Rachmat street characteristics. the traffic authorities should improve management.

4. CONCLUSION

Based on the data analysis results, several conclusions are obtained, including:

- 1. The U-turn facility on Jendral Basuki Rachmat street affects the traffic flow characteristics. Vehicles that do U-turns at 07.00 and 18.00 as rush hour and high side friction create queues and affect vehicle speed on Jenderal Basuki Rachmat street. The characteristics of traffic flow on Jenderal Basuki Rachmat street are level D with a v/c value of 0.83.
- 2 The highest number of vehicles using the U-turn facility on Jendral Basuki Rachmat street from the East-West direction is 1949 vehicles per hour, while from the West-East direction is 1996 vehicles per hour.
- 3. The highest average vehicle travel time when doing a U-turn on Jalan Jendral Basuki Rachmat from the East-West direction is 12.6 seconds, while from the West-East direction it is 15.3 seconds.
- 4. The highest vehicle queue length when doing a U-turn in the East-West direction is 25 meters, while the West-East direction is 50 meters.

REFERENCES

- [1] Adris P. A. & Sarwono S. A,. (2008). Pengaruh Pergerakan U-Turn (Putar Balik Arah) Terhadap Kecepatan Arus Lalu Lintas Menerus.
- [2] Caroline, Jenny & Winaya, Amrita.
 (2019). Analisis Putaran Balik (U-Turn) Terhadap Tingkat Pelayanan Ruas Jalan Raya Waru Sidoarjo.
- [3] Direktorat Jenderal Bina Marga. (1997). Manual Kapasitas Jalan Indonesia. Jakarta.
- [4] Hobbs. (1995). Perencanaan Dan Teknik Lalu Lintas. Yogyakarta.
- [5] Kasan, Muhammad., Mashuri, & Listiawati, Hilda. (2005). Pengaruh U-Turn Terhadap Karakteristik Arus Lalu Lintas Di Ruas Jalan Kota Palu (Studi Kasus Jl. Moh. Yamin Palu).
- [6] Kamaluddin, Rustian (2003). Ekonomi Transportasi Karakteristik Teori, Dan Kebijakan. Jakarta.
- [7] Koloway, B. S. (2009). Kinerja Ruas Jalan Perkotaan Jalan Prof. Dr. Satrio, Dki Jakarta. Journal Of Regional And City Planning.
- [8] Mardinata, L. A. (2014). Tugas Akhir Pengaruh U-Turn (Putar Balik Arah) Terhadap Kinerja Arus Lalu Lintas Ruas Jalan Raden Eddy Martadinata.
- [9] Prasetyo, Harwidyo Eko & Santoso, Tri. (2020). Analisis Kinerja U-Turn (Studi Kasus U-Turn Di Itc Jalan Letjen Soepono, Jakarta). Jakarta.
- [10] Purba, E. A. & Harianto, J. (2014). Pengaruh Gerakan U-Turn Pada Bukaan Median Terhadap Karakteristik Arus Lalu Lintas Di Ruas Jalan Kota.
- [11] Putar, (2013). Kajian Balik U-Turn Terhadap Kemacetan Ruas Jalan Di Pagar Alam, Dan Kota Bandar (Studi Kasus Ruas Jalan Teuku Umar).
- [12] Rangkuti, Nuril Mahda. (2012).
 Analisa Pengaruh Putaran Balik (U-Turn) Terhadap Kinerja Ruas Jalan(Studi Kasus).

- [13] Sukirman, Silvia. (1999). Dasar-Dasar Perencanaa Geometrik Transportasi. Bandung.
- [14] Utami, Yuwita Tri., Ariyadi, Teddy & Mayuni, Siti. (2017). Kajian Putar Balik (U-Turn) Terhadap Arus Lalu Lintas (Studi Kasus : Jalan Gajah Mada Pontianak).