International Journal of Civil Engineering and Infrastructure

Vol. 1, No. 1, March 2023

UTILIZATION OF THE HEC-RAS METHOD IN ANALYZING INUNDATION AT SUNTER JAYA

Mohammad Immamuddin ${ }^{1}$, Rosyid Al Fiansyah ${ }^{1}$
${ }^{1}$ Civil Engineering Study Program, Muhammadiyah Jakarta University, Jl. Cempaka Putih Tengah 27, Indonesia
Correspondance email: rosyidalfiansyah21@gmail.com

Received November 23, 2022 | Accepted November 28, 2022

Abstract

Sunter Jaya channel is one of the channels located in Tanjung Priok District, North Jakarta City which is geographically located at $6^{\circ} 09^{\prime} 31$ "South Latitude and $106^{\circ} 52^{\prime} 08^{\prime \prime}$ East Longitude. Sunter Jaya area often occurs inundation when the rainy season arrives when Lake Sunter and Lake Agung excess water capacity. Sediment/sediment factors and lack of awareness of the local community to dispose of garbage in their place. In addition, the growth of some wild plants in the waterways also has the potential to cause disruption to the drainage channel. By conducting an analysis using the Pearson III log distribution method and normal logs and the highest plan of rainfall is taken in the 5 -year period using 28 -year rainfall data obtained from the Kemayoran Rainfall Station which is then calculated by the

Thiessen method, it can be found that there are 4 Rainfall Intensity that occurs in the 5 -year period is 192.16 mm in the normal log distribution method, then the mononobe equation is used to find rainfall intensity per hour. , 3,7,8 cannot accommodate rainwater discharge. Therefore, there is a need for additional dimensions to channels 2 from $0.75 \mathrm{~m} \times 0.24 \mathrm{~m}$ to $0.75 \mathrm{~m} \times 1 \mathrm{~m}$, channel 3 from $0.57 \mathrm{~m} \times 0.15 \mathrm{~m}$ to $0.57 \mathrm{~m} \times 0.70 \mathrm{~m}$, channel 7 from $0.60 \mathrm{~m} \times 0.25 \mathrm{~m}$ to $0.60 \mathrm{~m} \times 1.2 \mathrm{~m}$, and channel 8 from $0.50 \mathrm{~m} \times 0.28 \mathrm{~m}$ to $0.50 \times 1.2 \mathrm{~m}$. With the addition of these dimensions, the channel will be able to work optimally.

Keywords: channels, sediment/sedimentation, inundation, thiessen method

1. PRELIMINARY

DKI Jakarta as the Capital of the State of Indonesia, is an area that has an area of $7659.02 \mathrm{~km}^{2}$. Of this area, $661.52 \mathrm{~km}^{2}$ is the land which includes 110 islands, while the other $6997.50 \mathrm{~km}^{2}$ is the ocean. As the center of government and economic activity, DKI Jakarta continues to experience development in various fields including infrastructure, which is one of
the main concerns of the local government. However, behind the progress of development, DKI Jakarta also faces various problems, one of which is the problem of standing water. The problem of inundation is often complained of by Jakarta residents, and two main problems that often occur are traffic jams and floods. Floods, in particular are not only
influenced by natural factors such as high rainfall, but also by factors of human activity. The Sunter Jaya area, located in Tanjung Priok District, North Jakarta City, is one of the areas that experienced a puddle problem. Its densely populated geographical location and inadequate drainage systems cause puddles to become a problem every time the rainy season arrives. The Sunter Jaya channel has an important role in flowing water from Lake Agung to Kali Sunter. However, the capacity of this channel has not been able to accommodate high water discharge, so it often causes arterial paths and residential areas to be flooded. The factors causing inundation in the Sunter Jaya area are as follows: Inadequate drainage systems make the channel unable to drain water to the Sunter River, the difference in channel dimensions causes water buildup at a smaller point, so that water overflows and inundates the roads that are often passed by the population, high sedimentation from mud and plastic waste causes reduced channel capacity, so that water is not accommodated and overflowed, damage to the water gate when it rains due to corrosion in the gear box. Channels, especially on Street H. Amsir, and mouse traps on Jalan Instalkes, cause blockages. Departing from the problems above, the author wants to analyze whether the capacity of the drainage channel in Sunter Jaya is enough to overcome standing water. The author will also provide input to the government to make direct repairs to the location of the channel.

2. THEORETICAL BASIS

Definition of Hidrology

According to Soemarto (1986) that hydrology is a science that explains the state and movement of water in our nature. This situation includes the form of water that involves changes between the liquid, solid and gas in the atmosphere above or below the ground surface. The next opinion according to Joyce Martha W. (1982) Hydrology is the study of the occurrence of the movement and
distribution of water on earth, both above and below the surface of the earth, about physical nature, water chemistry and its reaction to the environment and its relationship with life.

Definition of Drainage

Drainage is a water regulation system that is used to reduce excess water or drain rainwater from certain areas such as home yards or agricultural land. This includes the use of trenches, channels, or pipe systems to help drain water to the destination place (David A. Impellitor, 2005).

Drainage is an action or process of draining or removing water from an area or environment to prevent standing water and ensure groundwater balance. This can involve the construction of channels, infiltration wells, or pipe systems to drain water to a safer or more appropriate location (S. P Novak, 2010).
General drainage function The following is the function of drainage according to James N. Luthin, 2004:

1. Dry the city area of the inundation to avoid negative impacts
2. Dreaming the surface water of the nearest recipient water as soon as possible.
3. Controlling excess surface water that can be used for water supply and aquatic life.
4. Responding to surface water to preserve groundwater (water conservation).
5. Protect the facilities and infrastructure that have been built.

Types of drainage

The following types of drainage according to Andy D. Ward, 2012:

1. According to the history there are 2, namely: Natural Drainage and Artificial Drainage
2. According to the location of the building there are 2 , namely: surface drainage and underground drainage.
3. According to its function there are 2, namely: Single Purpose and Multi Purpose
4. According to the construction there are 2, namely: Open channels and closed channels

Definition of Flood

According to Corlin R. Thorne (2005) flooding is a condition when certain areas or regions are flooded that exceeded its normal limits. Floods can occur due to high rainfall, river overflow, or other consequences such as drainage systems.
Flooding in a general sense is a high amount of river water flow discharge, or the flow of water flow in the river is relatively greater than the normal conditions due to the rain that falls upstream or in a certain place occurs continuously, so that the water cannot be accommodated by the existing river grooves, the water is abundant and inundated the surrounding area (Regulation of the Director General of RLPS No. 04 yrs 2009).

Causes of Floods

According to P.P. Mujumdar (2013) Causes of floods can vary, including high rainfall, river overflow, high sea tides, inappropriate development, and inadequate drainage systems. Research sites
The location where this research is located in North Jakarta is along the channel that entered the Sunter River.

Figure 1. Research Locations

Data collection technique

Data collection techniques in this research report are:

Used to find reference theory that is relevant to the case or problem found. The literature study consists of: Final Project, Book, Journal.
2. Field survey

Direct review to the field with the aim of knowing the location of the case study, namely in the Sunter Jaya area.
3. Primary data collection Primary data collection is obtained directly in the field which includes, among others: Knowing the shape and dimensions of drainage channels in the Sunter Jaya area channel.
Knowing the condition of the Sunter Jaya area channel.
4. Secondary data collection Secondary data collection is obtained from agencies that have links in planning, controlling, and handling floods which include: Determining the area of the catchment area is obtained by digitizing using Google Earth, rainfall data obtained from the Climatology and Geophysical Meteorology Agency or we can called (BMKG) Kemayoran Kusuma 1996-2023, Map of land use maps obtained using Googleearth.

3. RESULTS AND DISCUSSION

Analysis of Rainfall Data

The maximum daily rainfall data is obtained from the Meteorology, Climatology and Geophysics Agency (BMKG). Observation Location of Kemayoran Lintang Rainfall
Station $06^{\circ} 09^{\prime} 36^{\prime}$ LS and $106^{\circ} 51$ ' 12 'BT. To find rainfall data, average rainfall (X), standard deviation (SD), variation coefficient (CV), slope coefficient (CS), sharpness coefficient must be calculated first.
Table. 1 Rainfall distribution

N o	Xi	$\mathrm{Xi}-\mathrm{X}$	$(\mathrm{Xi}-$ $\mathrm{X})^{2}$	$(\mathrm{Xi}-\mathrm{X})^{3}$	$(\mathrm{Xi}-\mathrm{X})^{4}$
1	72	-	587		34524
1	76.65	5.7 7	-450399	673.24	

1. Literature study

2	$\begin{aligned} & 79 . \\ & 50 \end{aligned}$	69.15	$\begin{gathered} 478 \\ 2.2 \\ 2 \end{gathered}$	-330707	$\begin{array}{r} 22869 \\ 594.09 \end{array}$
3	$\begin{gathered} 82 . \\ 2 \end{gathered}$	66.45	$\begin{gathered} 441 \\ 6.0 \\ 8 \end{gathered}$	-293464	$\begin{aligned} & 19501 \\ & 737.44 \end{aligned}$
4	$\begin{gathered} 90 . \\ 5 \end{gathered}$	58.15	$\begin{gathered} 338 \\ 1.8 \\ 4 \end{gathered}$	-196666	$\begin{aligned} & 11436 \\ & 827.38 \end{aligned}$
5	93	55.65	$\begin{gathered} 309 \\ 7.3 \\ 2 \\ \hline \end{gathered}$	-172377	$\begin{gathered} 95933 \\ 91.26 \end{gathered}$
6	$\begin{gathered} 94 . \\ 1 \end{gathered}$	54.55	$\begin{gathered} 297 \\ 6.0 \\ 9 \end{gathered}$	-162356	$\begin{gathered} 88571 \\ 24.52 \end{gathered}$
7	$\begin{gathered} 94 . \\ 8 \end{gathered}$	53.85	$\begin{gathered} 290 \\ 0.2 \\ 1 \\ \hline \end{gathered}$	-156187	$\begin{gathered} 84112 \\ 01.55 \end{gathered}$
8	$\begin{gathered} 104 \\ .6 \end{gathered}$	44.05	$\begin{gathered} 194 \\ 0.7 \\ 2 \end{gathered}$	-85496	$\begin{gathered} 37663 \\ 83.08 \end{gathered}$
9	$\begin{gathered} 105 \\ .2 \end{gathered}$	43.45	$\begin{gathered} 188 \\ 8.2 \\ 1 \\ \hline \end{gathered}$	-82050	$\begin{gathered} 35653 \\ 47.84 \end{gathered}$
1	$\begin{gathered} 119 \\ .2 \end{gathered}$	29.45	$\begin{gathered} 867 \\ .51 \end{gathered}$	-25551	$\begin{gathered} 75257 \\ 8.58 \end{gathered}$
1 1	$\begin{gathered} 122 \\ .5 \end{gathered}$	26.15	$\begin{gathered} 684 \\ .01 \end{gathered}$	-17889	$\begin{gathered} 46786 \\ 8.72 \end{gathered}$
1 2	$\begin{gathered} 124 \\ .1 \end{gathered}$	24.55	$\begin{gathered} 602 \\ .88 \end{gathered}$	-14803	$\begin{gathered} 36346 \\ 1.73 \end{gathered}$
1 3	$\begin{gathered} 124 \\ .5 \end{gathered}$	24.15	$\begin{gathered} 583 \\ .40 \end{gathered}$	-14091	$\begin{gathered} 34034 \\ 9.74 \end{gathered}$
1 4	$\begin{gathered} 125 \\ .6 \end{gathered}$	23.05	$\begin{gathered} 531 \\ .47 \end{gathered}$	-12252	$\begin{gathered} 28245 \\ 7.34 \end{gathered}$
1	$\begin{gathered} 129 \\ .3 \end{gathered}$	19.35	$\begin{gathered} \hline 374 \\ .56 \\ \hline \end{gathered}$	-7249	$\begin{gathered} 14029 \\ 5.74 \end{gathered}$
6	$\begin{gathered} 147 \\ .2 \end{gathered}$	-1.45	$\begin{gathered} 2.1 \\ 1 \end{gathered}$	-3	4.46
1 7	$\begin{gathered} 147 \\ .9 \end{gathered}$	-0.75	$\begin{gathered} 0.5 \\ 7 \end{gathered}$	0	0.32
1 8	$\begin{gathered} 162 \\ .2 \\ \hline \end{gathered}$	13.55	$\begin{gathered} 183 \\ .51 \end{gathered}$	2486	$\begin{gathered} 33674 . \\ 35 \end{gathered}$
9	$\begin{gathered} 168 \\ .5 \end{gathered}$	19.85	$\begin{gathered} \hline 393 \\ \hline .88 \end{gathered}$	7817	$\begin{gathered} 15514 \\ 2.03 \end{gathered}$
2 0	$\begin{gathered} 179 \\ .7 \end{gathered}$	31.05	$\begin{gathered} 963 \\ .88 \end{gathered}$	29925	$\begin{gathered} 92906 \\ 6.06 \end{gathered}$
2 1	$\begin{gathered} 192 \\ .7 \end{gathered}$	44.05	$\begin{gathered} 194 \\ 0.0 \\ 9 \\ \hline \end{gathered}$	85454	$\begin{gathered} 37639 \\ 40.94 \end{gathered}$
2 2	$\begin{gathered} 193 \\ .4 \end{gathered}$	44.75	$\begin{gathered} \hline 200 \\ 2.2 \\ 4 \end{gathered}$	89593	$\begin{gathered} 40089 \\ 76.51 \end{gathered}$
2 3	$\begin{gathered} 199 \\ .7 \end{gathered}$	51.05	$\begin{gathered} \hline 260 \\ 5.7 \\ 4 \\ \hline \end{gathered}$	133014	$\begin{gathered} 67898 \\ 69.85 \end{gathered}$

$\left.\begin{array}{|c|c|c|c|l|c|}\hline 2 & 204 & 55.35 & \begin{array}{c}306 \\ 3.2 \\ 3\end{array} & & \\ \hline\end{array}\right)$

Source : Calculation Results

1. Average rainfall

Based on table 1 the average maximum rain value can be searched with the following formula:

$$
\begin{aligned}
\text { Average value }(\bar{X}) & =\frac{\sum_{i=1}^{n} \mathrm{Xi}}{n} \\
& =\frac{4162,30}{28} \\
& =148,65
\end{aligned}
$$

2. Standard Deviation

Based on table 1, the standard deviation can be searched using the following formula:
Standar deviasi (Sd) $=\sqrt{\frac{\sum_{i=1}^{n}(\mathrm{Xi}-\overline{-})^{2}}{n-1}}$

$$
\begin{aligned}
& =\sqrt{\frac{91226,83}{28-1}} \\
& =58,13
\end{aligned}
$$

3. Variation Coefficient

Based on the average value and standard deviation that has been sought, the coefficient of variation can be searched using the following formula:
Variation Coefficient (Cv) $=\frac{\bar{x}}{S d}$

$$
\begin{aligned}
& =\frac{148,65}{58,13} \\
& =0,39
\end{aligned}
$$

4. Slope Coefficient

Based on table 1, the slope coefficient can be searched using the following formula:
Koefisien (Cs) $=\frac{n \times \sum_{i=1}^{n}(X i-\bar{X})^{3}}{(n-1) \times(n-2) \times S d^{3}}$

$$
\begin{aligned}
& =\frac{28 \times 3719618,41}{(28-1) \times(28-2) \times 58,13^{3}} \\
& =0,76
\end{aligned}
$$

5. Sharpess Coefficient

Based on table 1 the sharpness coefficient can be searched using the following formula:
(Ck)

$$
\begin{aligned}
& =\frac{n^{2} \times \sum_{\mathrm{i}=1}^{\mathrm{n}}(\mathrm{Xi}-\overline{\mathrm{X}})^{4}}{(\mathrm{n}-1) \times(\mathrm{n}-2) \times(\mathrm{n}-3) \times \mathrm{Sd} \mathrm{~d}^{4}} \\
& =\frac{28^{2} \times 776786059,68}{(28-1) \times(28-2) \times(28-3) \times 58,13^{4}} \\
& =3,03
\end{aligned}
$$

Distribution Method

Based on the parameters obtained, then searched for the distribution method that suits the needs. The following table calculation results to determine the distribution method:
Table 2. Results of Calculation of Distribution Methods and Distribution Method Terms

$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{o} \end{aligned}$	$\begin{gathered} \hline \text { Distribu } \\ \text { si } \end{gathered}$	Syarat	Hitunga n	Ket
1	Gumbel	Cs $\approx 1,4$	0.7554	Doesn t Meet
		$\mathrm{Ck} \approx 5,4$	3.0396	
2	Normal	$\mathrm{Cs}=0$	0.7554	Doesn t Meet
		$\mathrm{Ck}=3$	3.0396	
3	Log Normal	$\begin{gathered} \mathrm{Cs} \approx 3 \mathrm{Cv} \\ =0.9696, \\ \text { atau } \end{gathered}$	0.7554	Meet
		$\mathrm{Cs} / \mathrm{Cv} \approx 3$	3.0396	
4	$\begin{gathered} \hline \text { Log } \\ \text { Pearson } \end{gathered}$ III	Selain dari nilai di atas	-	Doesn' t Meet

Source : Departemen Pekerjaan Umum, 2010
Table 3. Results of Calculation of Distribution Methods and Distribution Method Terms

$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{o} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Distribu } \\ \text { si } \end{gathered}$	Syarat	Hitunga n	Ket
1	Gumbel	Cs $\approx 1,4$	0.7554	Doesn t Meet
		$\mathrm{Ck} \approx 5,4$	3.0396	
2	Normal	$\mathrm{Cs}=0$	0.7554	Doesn' t Meet
		$\mathrm{Ck}=3$	3.0396	
3	Log Normal	$\begin{aligned} & \mathrm{Cs}= \\ & \mathrm{Cv}^{3}+3 \mathrm{Cv} \\ & =1,0033 \end{aligned}$	0.7554	Doesn t Meet

		$\mathrm{Ck}=$ $\mathrm{Cv}^{8}+6 \mathrm{Cv}^{6}$ $+15 \mathrm{Cv}^{4}+$		
	$16 \mathrm{Cv}^{2}+3=$ 4,8419	3.0396		
4	Log Pearson III	Selain dari nilai di atas	-	Meet

Source : Departemen Pekerjaan Umum, 2010
Judging from Table 2. then to find rainfall plans the method that can be used is the normal log method and the Pearson III log method.

Rainfall Plan Normal Log Method

After calculating rainfall, standard deviation, slope coefficient and sharpness coefficient. Next, calculate the repeat period according to the methods that meet the requirements.
Table. 4 Rainfall Plan Normal Log Method

No	Xi	Log Xi	$(\operatorname{LogXi}-\log X)^{2}$
1	72	1.8573	0.0806
2	79.50	1.9004	0.0580
3	82.2	1.9149	0.0513
4	90.5	1.9566	0.0341
5	93	1.9685	0.0299
6	94.1	1.9736	0.0281
7	94.8	1.9768	0.0271
8	104.6	2.0195	0.0148
9	105.2	2.0220	0.0142
10	119.2	2.0763	0.0042
11	122.5	2.0881	0.0028
12	124.1	2.0938	0.0023
13	124.5	2.0952	0.0021
14	125.6	2.0990	0.0018
15	129.3	2.1116	0.0009
16	147.2	2.1679	0.0007
17	147.9	2.1700	0.0008
18	162.2	2.2101	0.0047
19	168.5	2.2266	0.0469
20	179.7	2.2545	0.0356
21	192.7	2.2849	0.0251
22	193.4	2.2865	0.0246
23	199.7	2.3004	0.0204
24	204	2.3096	0.0179
25	216.2	2.3349	0.0118
26	234.7	2.3705	0.0525
27	277.5	2.4433	0.0912
28	277.5	2.4433	0.0912
Σ	4162.30	59.9559	0.7757
X	148.65	2.1413	

Source: calculation results

1. Calculate The Average Log X Value Log X on average is calculated using the following formula:
Nilai rata-rata $\bar{X} \log x \quad=\frac{\sum_{i=1}^{n} \log X i}{n}$

$$
\begin{aligned}
=\frac{59,9559}{28} & \\
& =2,1415
\end{aligned}
$$

2. Calculating the standard deviation of the normal log
The standard deviation of $\log \mathrm{x}$ is calculated using the following formula:

$$
\text { (Sd) } \begin{aligned}
\log \mathrm{x} & =\sqrt{\frac{\sum_{i=1}^{\mathrm{n}}(\log \mathrm{Xi}-\log \overline{\mathrm{J}})^{2}}{\mathrm{n}-1}} \\
& =\sqrt{\frac{0,7757}{28-1}} \\
& =0,1695
\end{aligned}
$$

The following is looking for the value of the KT frequency factor for normal log distribution using a table that can be seen in Table 5.
Table. 5 Frequency Value (KT) Normal Log Distribution

Periode (T)	Peluang	KT
2	0.500	0.00
5	0.200	0.84
10	0.100	1.28
20	0.050	1.64
50	0.020	2.05
100	0.010	2.33
200	0.005	2.58

Source : Soewarno, 1995

Rainfall Plans Pearson Log Method III

After calculating rainfall, standard deviation, slope coefficient and sharpness coefficient. Next, calculate the repeat period according to the methods that meet the requirements.

Table. 6 rainfall of the Pearson log method

No	Xi	Xi-X	$\begin{aligned} & (\mathrm{Xi}- \\ & \mathrm{X})^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Xi}- \\ & \mathrm{X})^{3} \\ & \hline \end{aligned}$	$(\mathrm{Xi}-\mathrm{X})^{3}$
1	72	$\begin{aligned} & 76.6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5875 . \\ & 77 \end{aligned}$	4503 99	$\begin{aligned} & 3452467 \\ & 3.24 \end{aligned}$
2	$\begin{aligned} & 79 . \\ & 50 \end{aligned}$	$\begin{aligned} & 69.1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4782 . \\ & 22 \end{aligned}$	$\begin{aligned} & 3307 \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & 2286959 \\ & 4.09 \end{aligned}$
3	$\begin{aligned} & 82 . \\ & 2 \end{aligned}$	$\begin{aligned} & 66.4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4416 . \\ & 08 \end{aligned}$	$\begin{aligned} & 2934 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 1950173 \\ & 7.44 \end{aligned}$
4	$\begin{aligned} & 90 . \\ & 5 \end{aligned}$	$\begin{aligned} & 58.1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3381 . \\ & 84 \end{aligned}$	$\begin{aligned} & 1966 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 1143682 \\ & 7.38 \end{aligned}$
5	93	$\begin{aligned} & 55.6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3097 . \\ & 32 \end{aligned}$	$\begin{aligned} & 1723 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 9593391 . \\ & 26 \end{aligned}$
6	$\begin{aligned} & 94 . \\ & 1 \end{aligned}$	54.5 5	$\begin{aligned} & 2976 . \\ & 09 \end{aligned}$	$\begin{aligned} & 1623 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 8857124 . \\ & 52 \end{aligned}$
7	$\begin{aligned} & 94 . \\ & 8 \end{aligned}$	53.8 5	$\begin{aligned} & 2900 . \\ & 21 \end{aligned}$	1561 87	$\begin{aligned} & 8411201 . \\ & 55 \end{aligned}$
8	$\begin{aligned} & 10 \\ & 4.6 \end{aligned}$	44.0 5	$\begin{aligned} & 1940 . \\ & 72 \end{aligned}$	8549 6	$\begin{aligned} & 3766383 . \\ & 08 \end{aligned}$
9	$\begin{aligned} & 10 \\ & 5.2 \end{aligned}$	43.4 5	$\begin{aligned} & 1888 . \\ & 21 \end{aligned}$	8205 0	$\begin{aligned} & 3565347 . \\ & 84 \end{aligned}$
10	$\begin{aligned} & 11 \\ & 9.2 \end{aligned}$	29.4 5	$\begin{aligned} & 867.5 \\ & 1 \end{aligned}$	2555 1	$\begin{aligned} & 752578.5 \\ & 8 \end{aligned}$
11	$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 684.0 \\ & 1 \end{aligned}$	1788 9	$\begin{aligned} & 467868.7 \\ & 2 \end{aligned}$
12	$\begin{aligned} & 12 \\ & 4.1 \end{aligned}$	24.5 5	$\begin{aligned} & 602.8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1480 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 363461.7 \\ & 3 \end{aligned}$
13	$\begin{aligned} & 12 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 24.1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 583.4 \\ & 0 \end{aligned}$	$\begin{aligned} & 1409 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 340349.7 \\ & 4 \end{aligned}$
14	$\begin{aligned} & 12 \\ & 5.6 \end{aligned}$	$\begin{aligned} & \hline- \\ & 23.0 \\ & 5 \end{aligned}$	$\begin{aligned} & 531.4 \\ & 7 \end{aligned}$	1225 2	$\begin{aligned} & 282457.3 \\ & 4 \end{aligned}$
15	$\begin{aligned} & 12 \\ & 9.3 \end{aligned}$	19.3 5	$\begin{aligned} & 374.5 \\ & 6 \end{aligned}$	7249	$\begin{aligned} & 140295.7 \\ & 4 \end{aligned}$
16	$\begin{aligned} & 14 \\ & 7.2 \end{aligned}$	1.45	2.11	-3	4.46
17	$\begin{aligned} & 14 \\ & 7.9 \end{aligned}$	0.75	0.57	0	0.32
18	$\begin{aligned} & 16 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 5 \end{aligned}$	$\begin{aligned} & 183.5 \\ & 1 \end{aligned}$	2486	33674.35

19	$\begin{aligned} & 16 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 5 \end{aligned}$	$\begin{aligned} & 393.8 \\ & 8 \end{aligned}$	7817	$\begin{aligned} & 155142.0 \\ & 3 \end{aligned}$
20	$\begin{aligned} & 17 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 5 \end{aligned}$	$\begin{aligned} & 963.8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2992 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 929066.0 \\ & 6 \end{aligned}$
21	$\begin{aligned} & \hline 19 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 44.0 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1940 . \\ & 09 \end{aligned}$	$\begin{aligned} & 8545 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3763940 . \\ & 94 \end{aligned}$
22	$\begin{aligned} & 19 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2002 . \\ & 24 \end{aligned}$	$\begin{aligned} & 8959 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4008976 . \\ & 51 \end{aligned}$
23	$\begin{aligned} & 19 \\ & 9.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 51.0 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2605 . \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 1330 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 6789869 . \\ & 85 \end{aligned}$
24	$\begin{aligned} & \hline 20 \\ & 4 \end{aligned}$	$\begin{aligned} & 55.3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3063 . \\ & 23 \end{aligned}$	$\begin{aligned} & 1695 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 9383360 . \\ & 61 \end{aligned}$
25	21	$\begin{aligned} & 67.5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4562 . \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 3081 \\ & 82 \end{aligned}$	$\begin{aligned} & 2081658 \\ & 8.87 \end{aligned}$
26	$\begin{aligned} & 23 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 86.0 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7403 . \\ & 99 \\ & \hline \end{aligned}$	$\begin{aligned} & 6370 \\ & 87 \end{aligned}$	$\begin{aligned} & 5481903 \\ & 6.38 \end{aligned}$
27	$\begin{aligned} & 27 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 128 . \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 1660 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 2139 \\ & 031 \end{aligned}$	$\begin{aligned} & 2756065 \\ & 53.53 \end{aligned}$
28	$\begin{aligned} & 27 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 128 . \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 1660 \\ & 1.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 2139 \\ & 031 \\ & \hline \end{aligned}$	$\begin{aligned} & 2756065 \\ & 53.53 \\ & \hline \end{aligned}$
Σ	$\begin{aligned} & 41 \\ & 62 . \\ & 30 \end{aligned}$	0.00	$\begin{aligned} & 9122 \\ & 6.83 \end{aligned}$	$\begin{aligned} & 3719 \\ & 618 \end{aligned}$	$\begin{aligned} & 7767860 \\ & 59.68 \end{aligned}$
X	$\begin{aligned} & 14 \\ & 8.6 \\ & 5 \end{aligned}$		$\begin{aligned} & 5875 . \\ & 77 \end{aligned}$	$\begin{aligned} & 4503 \\ & 99 \end{aligned}$	$\begin{aligned} & 3452467 \\ & 3.24 \end{aligned}$

1. Calculate the Average Log X Value
$\log \bar{X}$ on average is calculated using the following formula:
Average value $\bar{X} \log x=\frac{\sum_{i=1}^{n} 1 \log X i}{n}$

$$
\begin{aligned}
& =\frac{59,9559}{28} \\
& =2,1413
\end{aligned}
$$

2. Calculating the standard deviation of the Log Pearson III
The standard deviation of LOG X is calculated using the following formula:
(Sd) $\log X$

$$
\begin{aligned}
& =\sqrt{\frac{\sum_{i=1}^{\mathrm{n}}(\log \mathrm{Xi}-\log \overline{\mathrm{X}})^{2}}{\mathrm{n}-1}} \\
& =\sqrt{\frac{0,7463}{28-1}} \\
& =0,1663
\end{aligned}
$$

3. Calculate the value of the tilt coefficient (Cs)
The slope value is calculated using the following formula :

$$
\begin{aligned}
\text { (Cs) } \log X \quad & =\frac{\mathrm{nx} \sum_{i=1}^{\mathrm{n}}(\operatorname{LogXX} \mathrm{i} \log \overline{\mathrm{X}})^{3}}{(\mathrm{n}-1) \times(\mathrm{n}-2) \times \mathrm{Sd}^{3}} \\
& =\frac{28 \times 0,0183}{(28-1) \times(28-2) \times 0,1663^{3}} \\
& =0,1588
\end{aligned}
$$

The following is looking for the value of the KT frequency factor for normal log distribution using a table that can be seen in Table 7.
Tabel. 7 Nilai faktor frekuensi (KT) distribusi Log Pearson III

Periode	CS	G
2	0.1588	-0.026
5	0.1588	0.832
10	0.1588	1.297
25	0.1588	1.804
50	0.1588	2.138
100	0.1588	2.442
200	0.1588	2.725

Source: calculation results

Maximum rainfall return period

Table 8 Hydrological design criteria of urban drainage systems

Tipologi Kota	Daerah Tangkapan Air (HA)			
	<10	$\begin{aligned} & 10- \\ & 100 \end{aligned}$	$\begin{aligned} & 101- \\ & 500 \end{aligned}$	>500
Kota Metropolitan	2Th	$\begin{aligned} & \text { 2Th- } \\ & 5 \mathrm{Th} \end{aligned}$	$\begin{aligned} & \text { 5Th- } \\ & 10 \mathrm{Th} \end{aligned}$	$\begin{aligned} & \text { 10Th- } \\ & 25 \mathrm{Th} \end{aligned}$
Kota Besar	2Th	$\begin{aligned} & \hline 2 \mathrm{Th}- \\ & 5 \mathrm{Th} \end{aligned}$	$\begin{aligned} & \text { 2Th- } \\ & 5 \mathrm{Th} \end{aligned}$	$\begin{aligned} & \text { 5Th- } \\ & \text { 20Th } \end{aligned}$
Kota Sedang	2Th	$\begin{aligned} & \text { 2Th- } \\ & \text { 5Th } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2Th- } \\ & \text { 5Th } \end{aligned}$	$\begin{aligned} & 5 \mathrm{Th}- \\ & 10 \mathrm{Th} \end{aligned}$
Kota Kecil	2Th	2Th	2Th	2Th

Source: Permen. PU No. 12 regarding the implementation of the 2014 urban drainage system
Based on the catchment area that has been plotted from Google Earth has an area of 20.2 ha, so based on table 8 the repeat period used is the five -year repellent period.
The maximum rainfall for the normal login method is calculated using the following formula:
$\log \mathrm{XT}=\log \mathrm{X}+(\mathrm{KT} . \operatorname{Sd} \log \mathrm{X})$
$\log X 5=2,1415+(0,84 \cdot 0,1695)$

$$
=2.2838
$$

The formula for calculating rainfall for the repeat period is the opposite of the XT log or
antilog XT
XT = Antilog XT
= Antilog 2.2838
$=192,16 \mathrm{~mm} / \mathrm{jam}$

Table 9 The maximum rainfall of the normal log re -period

Perio de (T)	Faktor frekue nsi (Kt J	Rata -rata Log Xi	Sd	Log X	Rujan na na (mm) (Xt)
2	0.00	2.15 09	0.16 20	2.15 09	141.5 4
5	0.84	2.15 09	0.16 20	2.28 69	193.6 1
10	1.28	2.15 09	0.16 20	2.35 82	228.1 4
20	1.64	2.15 09	0.16 20	2.41 65	260.9 2
50	2.05	2.15 09	0.16 20	2.48 29	304.0 2
100	2.33	2.15 09	0.16 20	2.52 82	337.4 8
200	2.58	2.15 09	0.16 20	2.56 87	370.4 6

Source: calculation results
The maximum rainfall for the re -period of the Pearson III log method is calculated using the following formula:
$\log X T \quad=\log X+G . S d \log X$

$$
\begin{aligned}
& =2,1413+(0,83 \cdot 0,1663) \\
& =2,2797
\end{aligned}
$$

The formula for calculating rainfall for the repeat period is the opposite of the XT log or antilog XT

XT $\quad=$ Antilog XT

$$
=190,41 \mathrm{~mm} / \mathrm{jam}
$$

Table. 10 Maximum rainfall of the Pearson III Log Repeat Periode

	(rat			Log	Huja
Peri	a -	Nila	Sd	T	n
ode	rata	i	\log	tah	Renc
(T)	Log	(G)	X	un	
	X)				(mm)

2	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} - \\ 0.0 \\ 906 \end{gathered}$	$\begin{gathered} 0.1 \\ 620 \end{gathered}$	$\begin{aligned} & 2.1 \\ & 362 \end{aligned}$	$\begin{gathered} 136.8 \\ 436 \end{gathered}$
5	$\begin{aligned} & \hline 2.1 \\ & 509 \end{aligned}$	$\begin{gathered} \hline 0.8 \\ 060 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 620 \end{aligned}$	$\begin{gathered} \hline 2.2 \\ 814 \end{gathered}$	$\begin{gathered} 191.1 \\ 721 \end{gathered}$
10	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} 1.3 \\ 295 \end{gathered}$	$\begin{gathered} 0.1 \\ 620 \end{gathered}$	$\begin{gathered} \hline 2.3 \\ 662 \end{gathered}$	$\begin{gathered} 232.3 \\ 906 \end{gathered}$
25	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} 1.9 \\ 276 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 620 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 631 \end{aligned}$	$\begin{gathered} 290.4 \\ 584 \end{gathered}$
50	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} 2.3 \\ 382 \end{gathered}$	$\begin{gathered} 0.1 \\ 620 \end{gathered}$	$\begin{gathered} 2.5 \\ 296 \end{gathered}$	$\begin{gathered} 338.5 \\ 168 \end{gathered}$
100	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} 2.7 \\ 228 \end{gathered}$	$\begin{gathered} 0.1 \\ 620 \end{gathered}$	$\begin{gathered} 2.5 \\ 919 \end{gathered}$	$\begin{gathered} 390.7 \\ 204 \end{gathered}$
200	$\begin{array}{r} 2.1 \\ 509 \end{array}$	$\begin{gathered} 3.0 \\ 889 \end{gathered}$	$\begin{gathered} 0.1 \\ 620 \end{gathered}$	$\begin{gathered} 2.6 \\ 512 \end{gathered}$	$\begin{gathered} 447.8 \\ 746 \end{gathered}$

Source: calculation results
So from the results of the calculation of rainfall the plan method of the Normal Log and
Pearson III log was the highest value was taken for the reference for the value of the intensity of the rainfall of 5 years and the highest value in the normal log method.
Table 11 Comparison of Plan Rainfall Value

Periode (T)	Metode Perhitungan Curah Hujan Rencana (mm)	
	Log Pearson III	Log Normal
2	137.05	138.45
5	190.41	192.16
10	227.49	228.16
$25 / 20$	276.24	262.57
50	313.81	308.14
100	352.65	343.72
200	392.90	378.94

Source: calculation results
Calculate concentration time (Tc)
To calculate the concentration time (TC) can use the formula:
$\mathrm{c}=\frac{0,0195 \times L^{0,77}}{S^{0,385}}$
Where:
Tc = Concentration time (minutes)
$\mathrm{L}=$ The length of the water path from the farthest point to the point reviewed
(m)

S = River slope
The slope of the channel (S) and (TC) is obtained by the following calculations:
$S=\frac{\Delta H}{L}$
Where:
S = Channel slope
$\Delta \mathrm{H}=$ The height of the farthest point and the drainage area
L = Channel length
Table. 12 Channel Slope (S) And Concentration of Time (TC)

Lok asi	Saluran (m)			S	TC	
	H(A wal)	$\begin{gathered} \hline \text { H(A } \\ \text { khi } \\ \text { r) } \\ \hline \end{gathered}$	L		$\begin{gathered} \text { Meni } \\ \mathrm{t} \end{gathered}$	Jam
1	7	2	129	$\begin{gathered} \hline 0.0 \\ 388 \\ \hline \end{gathered}$	$\begin{gathered} 2.87 \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 479 \\ \hline \end{gathered}$
2	5	3	135	$\begin{gathered} \hline 0.0 \\ 148 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.31 \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 719 \\ \hline \end{gathered}$
3	6	3	288	$\begin{gathered} 0.0 \\ 104 \end{gathered}$	$\begin{gathered} 8.85 \\ 00 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 475 \end{aligned}$
4	6	3	300	$\begin{gathered} 0.0 \\ 100 \end{gathered}$	$\begin{gathered} 9.27 \\ 72 \end{gathered}$	$\begin{gathered} 0.1 \\ 546 \end{gathered}$
5	8	3	473	$\begin{gathered} \hline 0.0 \\ 106 \\ \hline \end{gathered}$	$\begin{aligned} & 12.8 \\ & 942 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.2 \\ 149 \\ \hline \end{gathered}$
6	6	4	271	$\begin{gathered} 0.0 \\ 074 \end{gathered}$	$\begin{gathered} 9.64 \\ 31 \\ \hline \end{gathered}$	$\begin{array}{r} 0.1 \\ 607 \\ \hline \end{array}$
7	7	4	390	$\begin{gathered} \hline 0.0 \\ 077 \\ \hline \end{gathered}$	$\begin{aligned} & 12.5 \\ & 610 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.2 \\ 093 \\ \hline \end{gathered}$
8	5	2	788	$\begin{gathered} \hline 0.0 \\ 038 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 28.3 \\ & 029 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 0.4 \\ 717 \\ \hline \end{array}$
9	5	3	129	$\begin{gathered} \hline 0.0 \\ 232 \\ \hline \end{gathered}$	$\begin{gathered} 2.56 \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 427 \\ \hline \end{gathered}$

Source: calculation results

Rainfall intensity

The intensity of rainfall is calculated using the mononobe equation:
$\mathrm{I}=\frac{\mathrm{R}_{24}}{24}\left[\frac{24}{\mathrm{t}}\right]^{2 / 3}$
Where:
R24 = Maximum rainfall in 24 hours (mm)
t = Duration of rainfall (hours)
I = Rainfall intensity (mm/hour) By using the maximum rainfall data of the repeat period using the normal log method, it can be calculated that the
rainfall intensity data can be calculated with the duration of rain per hour.

Table. 13 Rainfall intencity calculation

t	R24						
	R2	R5	$\begin{gathered} \hline \text { R1 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { R2 } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { R5 } \\ 0 \end{gathered}$	$\begin{aligned} & \hline \text { R1 } \\ & 00 \end{aligned}$	$\begin{gathered} \mathrm{R} 20 \\ 0 \end{gathered}$
	$\begin{aligned} & 13 \\ & 8.4 \\ & 5 \end{aligned}$	$\begin{gathered} 19 \\ 2.1 \\ 6 \end{gathered}$	$\begin{gathered} 22 \\ 8.1 \\ 6 \end{gathered}$	$\begin{gathered} 26 \\ 2.5 \\ 7 \end{gathered}$	$\begin{gathered} 30 \\ 8.1 \\ 4 \end{gathered}$	$\begin{gathered} 34 \\ 3.7 \\ 2 \end{gathered}$	$\begin{aligned} & 378 . \\ & 943 \end{aligned}$
1	$\begin{aligned} & 48 . \\ & 00 \end{aligned}$	$\begin{aligned} & 66 . \\ & 62 \end{aligned}$	$\begin{aligned} & 79 . \\ & 10 \end{aligned}$	$\begin{aligned} & 91 . \\ & 03 \end{aligned}$	$\begin{aligned} & 10 \\ & 6.8 \\ & 2 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.1 \\ & 6 \end{aligned}$	$\begin{aligned} & 131 . \\ & 37 \end{aligned}$
2	$\begin{aligned} & \hline 30 . \\ & 24 \end{aligned}$	$\begin{aligned} & 41 . \\ & 97 \\ & \hline \end{aligned}$	83	$\begin{aligned} & 57 . \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 67 . \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 . \\ & 07 \end{aligned}$	$\begin{aligned} & 82.7 \\ & 6 \\ & \hline \end{aligned}$
3	$\begin{aligned} & 23 . \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 . \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38 . \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 . \\ & 76 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 . \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 . \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.1 \\ & 6 \\ & \hline \end{aligned}$
4	$\begin{aligned} & 19 . \\ & 05 \end{aligned}$	$\begin{aligned} & 26 . \\ & 44 \end{aligned}$	$\begin{aligned} & 31 . \\ & 39 \end{aligned}$	$\begin{aligned} & 36 . \\ & 12 \end{aligned}$	$\begin{aligned} & 42 . \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 . \\ & 29 \end{aligned}$	$\begin{aligned} & 52.1 \\ & 4 \\ & \hline \end{aligned}$
5	$\begin{aligned} & 16 . \\ & 41 \end{aligned}$	$\begin{aligned} & 22 . \\ & 78 \end{aligned}$	$\begin{aligned} & 27 . \\ & 05 \\ & \hline \end{aligned}$	31	$\begin{aligned} & 36 . \\ & 53 \end{aligned}$	$\begin{aligned} & 40 . \\ & 75 \end{aligned}$	$\begin{aligned} & 44.9 \\ & 3 \\ & \hline \end{aligned}$
6	$\begin{aligned} & 14 . \\ & 54 \end{aligned}$	$\begin{aligned} & 20 . \\ & 18 \end{aligned}$	$\begin{aligned} & 23 . \\ & 95 \end{aligned}$	$\begin{aligned} & 27 . \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 . \\ & 35 \end{aligned}$	$\begin{aligned} & 36 . \\ & 09 \end{aligned}$	$\begin{aligned} & 39.7 \\ & 9 \\ & \hline \end{aligned}$
7	$\begin{aligned} & 13 . \\ & 12 \end{aligned}$	$\begin{aligned} & 18 . \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21 . \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24 . \\ & 88 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29 . \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 . \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.9 \\ & 0 \\ & \hline \end{aligned}$
8	$\begin{aligned} & 12 . \\ & 00 \end{aligned}$	$\begin{aligned} & 16 . \\ & 65 \end{aligned}$	$\begin{aligned} & 19 . \\ & 77 \end{aligned}$	$\begin{aligned} & \hline 22 . \\ & 76 \end{aligned}$	$\begin{aligned} & \hline 26 . \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 . \\ & 79 \end{aligned}$	$\begin{aligned} & 32.8 \\ & 4 \\ & \hline \end{aligned}$
9	$\begin{aligned} & 11 . \\ & 09 \end{aligned}$	$\begin{aligned} & 15 . \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 . \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 . \\ & 04 \end{aligned}$	$\begin{aligned} & 24 . \\ & 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 27 . \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.3 \\ & 6 \\ & \hline \end{aligned}$
1 0		$\begin{aligned} & 14 . \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 04 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 . \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 . \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 . \\ & 67 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 0 \end{aligned}$
1 1	9.7 0	13. 47 1	15. 99	$\begin{aligned} & 18 . \\ & 40 \end{aligned}$	$\begin{aligned} & 21 . \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 . \\ & 09 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 6 \end{aligned}$
1 2 1	9.1 6	$\begin{aligned} & 12 . \\ & 71 \end{aligned}$	$\begin{aligned} & 15 . \\ & 09 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 . \\ & 38 \end{aligned}$	$\begin{aligned} & 22 . \\ & 73 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 6 \end{aligned}$
1 3	8.6 8	12. 05	14. 31	16.	$\begin{aligned} & 19 . \\ & 32 \end{aligned}$	$\begin{aligned} & 21 . \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.7 \\ & 6 \\ & \hline \end{aligned}$
1 4	8.2 6	11. 47		$\begin{aligned} & 15 . \\ & 67 \end{aligned}$	$\begin{aligned} & 18 . \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 . \\ & 51 \end{aligned}$	$\begin{aligned} & 22.6 \\ & 2 \\ & \hline \end{aligned}$
1	7.8 9	10. 95	$\begin{aligned} & 13 . \\ & 00 \end{aligned}$	$\begin{aligned} & 14 . \\ & 97 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 56 \end{aligned}$	$\begin{aligned} & 19 . \\ & 59 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 0 \end{aligned}$
1	7.5 6	10.	12. 46	$\begin{aligned} & 14 . \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 16 . \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 . \\ & 77 \end{aligned}$	$\begin{aligned} & 20.6 \\ & 9 \\ & \hline \end{aligned}$
1 7	7.2 6	$\begin{aligned} & 10 . \\ & 08 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 . \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 . \\ & 02 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 7 \\ & \hline \end{aligned}$
1 8	6.9 9	9.7 0	$\begin{aligned} & 11 . \\ & 52 \end{aligned}$	$\begin{aligned} & 13 . \\ & 25 \end{aligned}$	$\begin{aligned} & 15 . \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 35 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 3 \end{aligned}$
1 9	$\begin{aligned} & 6.7 \\ & 4 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 6 \end{aligned}$	$\begin{aligned} & 11 . \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 78 \end{aligned}$	$\begin{aligned} & 15 . \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 . \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.4 \\ & 5 \\ & \hline \end{aligned}$
2	6.5 1	9.0 4	$\begin{aligned} & 10 . \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 35 \end{aligned}$	$\begin{aligned} & 14 . \\ & 50 \end{aligned}$	$\begin{aligned} & 16 . \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.8 \\ & 3 \\ & \hline \end{aligned}$
2 1	$\begin{aligned} & 6.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 . \\ & 39 \end{aligned}$	$\begin{aligned} & 11 . \\ & 96 \end{aligned}$	$\begin{aligned} & 14 . \\ & 03 \end{aligned}$	$\begin{aligned} & 15 . \\ & 65 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 6 \end{aligned}$

2	6.1	8.4	10.	11.	13.	15.	16.7
2	1	8	07	59	61	18	3
2	5.9	8.2	9.7	11.	13.	14.	16.2
3	3	4	8	26	21	73	4
2	5.7	8.0	9.5	10.	12.	14.	15.7
4	7	1	1	94	84	32	9

Source: Calculating Resource

Picture. 2 Graph of relationship intensity Rainfall Intensity and Rain Duration
To calculate the intensity of the rainfall that occurs in the channel the mononobe equation is used with rainfall plans for the 5 -year re period of the normal log and rainfall duration with a concentration time (TC) with the Kirpich equation.
Table of rainfall intensity for 5 years received period

Loka si	Peri ode Ulan g (T)	Hujan Rencana		Intensit as Curah Hujan (I)
		$\begin{aligned} & \mathrm{Tc} \\ & \text { (Jam) } \end{aligned}$	Log Norm al	Log Normal
1	5	0.0479	$\begin{aligned} & 192.1 \\ & 6 \end{aligned}$	505.99
2	5	0.0719	$\begin{array}{\|l\|} \hline 192.1 \\ 6 \end{array}$	385.39

3	5	0.1475	192.1 6	238.63
4	5	0.1546	192.1 6	231.25
5	5	0.2149	192.1 6	185.68
6	5	0.1607	192.1 6	225.36
7	5	0.2093	192.1 6	188.95
8	5	0.4717	192.1 6	109.93
9	5	0.0427	192.1 6	544.89

Source: calculation results

Calculating the Run Off coefficient

Based on the existing situation of channels that have different dimensions and the location of the channels that are between residents' housing, shops, government buildings and highways, the catchment area is divided into 9 parts as follows:
Table. 14 Run off Koefisien calculation

No	Saluran	Luas $($ Km2 $)$	Koefisien Pengaliran
1	1	0.008042	0.600
2	2	0.008163	0.715
3	3	0.016316	0.735
4	4	0.024811	0.260
5	5	0.024737	0.272
6	6	0.035710	0.258
7	7	0.028968	0.262
8	8	0.036760	0.272
9	9	0.002551	0.294

Source: calculation results

Plan Rain Discharge (Qt)

The planned rainfall discharge is calculated using the following formula:
Q $\quad=0,278 . \mathrm{C} . \mathrm{I} . \mathrm{A}$
Where:
Q = Surface runoff peak discharge ($\mathrm{m}^{3} / \mathrm{sec}$)
C = Run Off coefficient
I = Rainfall intensity (mm/hour
A $\quad=$ The area of the drainage $\left(\mathrm{km}^{2}\right)$

8	7	0.0	0.	0.	0.	1.	0.	0.	1.	0.
	8	03	5	2	14	06	13	01	23	17
	8	8	0	8	0	0	2	3	0	2

Source: calculation results
Based on rain discharge data and existing channel capacity, it can be compared to find out the capacity of the channels capable or not to accommodate the rain discharge.
Table. 17 Comparison of Hydrological and Hydraulic Rain Discharges

Sal ura n	Debit Hujan Rencana	Debit Sal. Eks	Ket.
1	0.679	2.131	MAMPU
2	0.625	0.468	TIDAK MAMPU
3	0.796	0.143	TIDAK MAMPU
4	0.415	0.834	MAMPU
5	0.348	0.709	MAMPU
6	0.578	0.846	MAMPU
7	0.399	0.268	TIDAK MAMPU
8	0.306	0.172	TIDAK MAMPU
9	0.114	8.719	MAMPU

Source: calculation results
Tabel. 18 Change in channel dimensions

Ar ea	De eit	De bit	Keteran gan	Eks.		Baru	
	Q	Qs		b	h	b	h
1	0.6	0.7	MENAM	0.	0.	1.	1.
	79	55	PUNG	60	67	00	00
2	0.6	1.0	MENAM	0.	0.	1.	1.
	25	32	PUNG	75	24	20	50
3	0.7	0.8	MENAM	0.	0.	1.	1.
	96	65	PUNG	57	15	20	50
4	0.4	0.8	MENAM	0.	0.	1.	1.
	15	48	PUNG	55	60	20	50
5	0.3	0.8	MENAM	1.	0.	1.	1.
	48	72	PUNG	15	25	20	50
6	0.5	0.7	MENAM	0.	0.	1.	1.
	78	28	PUNG	60	62	20	50
7	0.3	0.7	MENAM	0.	0.	1.	1.
	99	44	PUNG	60	25	20	50
8	0.3	0.5	MENAM	0.	0.	1.	1.
	06	23	PUNG	50	28	20	50
9	0.1	3.3	MENAM	1.	0.	1.	1.
	14	39	PUNG	80	75	80	50

Source: calculation results

Table. 19 existing channel discharge (QS) after changes in channel dimensions

Kapasitas Saluran Baru										
$\begin{gathered} \mathrm{L} \\ \mathrm{o} \\ \mathrm{k} \end{gathered}$	L	S	b	h	A	P	R	n	V	$\begin{gathered} \mathrm{Q} \\ \mathrm{~s} \end{gathered}$
1	$\begin{aligned} & 1 \\ & 2 \\ & 9 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 387 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 1 . \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	3. 4 0	$\begin{gathered} 0 . \\ 35 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 62 \\ 9 \\ \hline \end{gathered}$	0. 75 5
2	$\begin{aligned} & \hline 1 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 148 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 . \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 . \\ 8 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 57 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 . \\ 03 \\ 2 \\ \hline \end{gathered}$
3	$\begin{aligned} & \hline 2 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 104 \\ 2 \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \text { zs } \\ 1 \end{gathered}$	$\begin{aligned} & 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 . \\ 42 \\ 9 \end{gathered}$	$\begin{gathered} 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 48 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 86 \\ 5 \\ \hline \end{gathered}$
4	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 100 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	4. 2 0	$\begin{gathered} \hline 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 47 \\ 1 \\ \hline \end{gathered}$	0. 84 8
5	$\begin{aligned} & 4 \\ & 7 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 0.0 \\ 105 \\ 7 \\ \hline \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	4. 2 0	$\begin{gathered} 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 48 \\ 4 \\ \hline \end{gathered}$	0. 87 2
6	$\begin{aligned} & 2 \\ & 7 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 073 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	4. 2 0	$\begin{gathered} \hline 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \end{gathered}$	$\begin{gathered} 0 . \\ 40 \\ 5 \\ \hline \end{gathered}$	0. 72 8
7	$\begin{aligned} & \hline 3 \\ & 9 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 076 \\ 9 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 41 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 74 \\ 4 \\ \hline \end{gathered}$
8	$\begin{aligned} & \hline 7 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 038 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 1 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 . \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 . \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 . \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0 . \\ 42 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 . \\ 29 \\ 1 \\ \hline \end{gathered}$	0. 52 3
9	8 6. 1	$\begin{gathered} \hline 0.0 \\ 232 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 1 . \\ 8 \\ 0 \\ \hline \end{gathered}$	1. 5 0	$\begin{aligned} & 2 . \\ & 7 \\ & 0 \\ & \hline \end{aligned}$	4. 8 0	$\begin{gathered} 0 . \\ 56 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \\ 01 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 1 . \\ 23 \\ 6 \\ \hline \end{gathered}$	3. 33 9

Source: calculation results

Modeling Using HEC-RAS

From the results of the study using rainfall for a period of 28 years, several channels were unable to accommodate rainfall discharge shown in the HEC-RAS modeling as follows:

Channel 2 on HEC-RAS

From the data above the water level is at a height of 0.45 m whereas in the HEC-RAS modeling the water level is at a height of
0.98 m which causes channel 2 to be unable to accommodate rainfall discharge
Channel 3 on HEC-RAS

Furthermore, the water level is at a height of 0.35 m whereas in the HEC-RAS modeling the water level is at a height of 0.68 m which causes channel 3 to be unable to accommodate rainfall discharge.

Channel 7 on HEC-RAS

In channel 7, the water level is at a height of 0.35 m , while in the HEC-RAS modeling the water level is at a height of 1.16 m , which causes channel 7 to be unable to accommodate rainfall discharge.

Channel 8 on HEC-RAS

Furthermore, the water level in channel 8 is at a height of 0.35 m whereas in the HECRAS modeling the water level is at a height of 1.2 m which causes channel 8 to be unable to accommodate rainfall discharge.

After channel normalization by adding the dimensions of the existing channel to the
new channel: channel 21.20 m x 1.50 m , channel $31.20 \mathrm{~m} \times 1.50 \mathrm{~m}$, channel 71.20 m x 1.50 m , channel $81.20 \mathrm{~m} \times 1.50 \mathrm{~m}$. Then the HEC-RAS modeling for the new channel can be obtained as follows:

Channel 2 on HEC-RAS after normalization

Channel 3 on HEC-RAS after normalization

Channel 7 on HEC-RAS after normalization

Channel 8 on HEC-RAS after normalization

Conclusion

Based on the results of the analysis above, several conclusions can be obtained, including:

1. 28-year rainfall data using the Thiessen method can only affect one station location, namely Kemayoran Station. With the distribution of the Pearson III log method and the normal logs taken by the highest plan rain value in the 5 year period found in the normal \log of 193.61 mm
2. Based on the calculation results obtained the average run-off coefficient and catchment area area as follows:
Table. 20 Calculation of Run Off coefficient and Catchment Area Area

No	Saluran	Luas $(\mathrm{Km2})$	Koefisien Pengaliran
1	1	0.008042	0.600
2	2	0.008163	0.715
3	3	0.016316	0.735
4	4	0.024811	0.260
5	5	0.024737	0.272
6	6	0.035710	0.258
7	7	0.028968	0.262
8	8	0.036760	0.272
9	9	0.002551	0.294

Source: calculation results
3. Based on the calculation results obtained a plan rain discharge with a 5 year repeat period as follows:
Table. 21 Existing channel discharge before Normalisation

Sal ura n	Debit Hujan Rencana	Debit Sal. Eks	Ket.
1	0.679	2.131	MAMPU
2	0.625	0.468	TIDAK MAMPU
3	0.796	0.143	TIDAK MAMPU
4	0.415	0.834	MAMPU
5	0.348	0.709	MAMPU
6	0.578	0.846	MAMPU
7	0.399	0.268	TIDAK MAMPU
8	0.306	0.172	TIDAK MAMPU
9	0.114	8.719	MAMPU

Source : Calculation results

Table. 22 existing channel discharge after normalization

Area	Debit	Debit	Keterangan
	Q	Qs	
1	0.679	0.755	MENAMPUNG
2	0.625	1.032	MENAMPUNG
3	0.796	0.865	MENAMPUNG
4	0.415	0.848	MENAMPUNG
5	0.348	0.872	MENAMPUNG
6	0.578	0.728	MENAMPUNG
7	0.399	0.744	MENAMPUNG
8	0.306	0.523	MENAMPUNG
9	0.114	3.339	MENAMPUNG

Source: calculation results
4. It is necessary to do good improvement and maintenance such as dredging sedimentation and waste and eliminating obstacle-obstacles along the channel periodically so that the drainage capacity and water rate are maintained.

REFERENCES

[1] David A. Impellitteri. 2005. Principles of Exterior Drainage: Short Course Series: National Concrete Masonry Association [2] S.P. Novak, B.A. White, W.S.Y. Yeo, and E.J. Plate. 2010. Principles of Urban Drainage and Flood Management: Taylor \& Francis
[3] Anonim. 1997. Drainase Perkotaan. Jakarta. Gunadarma
[4] Asdak, Chay. 2002. Hidrologi Dan Pengelolaan Daerah Aliran Sungai, Jakarta: Gadjah Mada University Press.
[5] Mohammad Imamuddin, Indri Wibowo. 2019. Analisa Genangan Di Kawasan Jalan Petamburan 2 Jakarta Pusat : Fakultas Teknik Jurusan Sipil Universitas Muhammadiyan Jakarta.

