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ABSTRACT 

The main objective of the research work is to present the buckling analysis of plates subjected 
to uniform compressive load. To obtain accurate results in analysis plate must be free from 
shear locking, this phenomenon occurs when the ratio of length to thickness ratios plate 
increases. Many investigations have been carried out on plate elements to see the behavior of 
a plate in the case of thin plates. In this paper, we investigated plate analysis in the case of 
buckling analysis using one of the finite element plates, the numerical analysis was conducted 
on a skew plate with varying length to thickness ratios, and skew angles.  The reference 
solution in the literature will be used to compare the analysis results the level of convergence 
and plate performance will be obtained. 
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1. INTRODUCTION 

One of the tools used to analyze plate 
elements is the finite element method, The 
finite element method is a numerical 
method that uses discretization techniques 
on elements by dividing a part of the finite 
whole into small pieces, which are 
interconnected only at nodal points. If an 
element formulation cannot discretize the 
element accurately then a shear locking 
occurs, this phenomenon occurs when 
length to thickness ratios (L/h) increases 
[1]. 

The plate must be able to eliminate the shear 
effect when the length to thickness ratios 
(L/h) increases, this is done to qualify as a 
Kirchhoff plate. Plate analysis results will 
not be accurate when the plate element 

depends on its thickness which causes shear 
locking. Many researchers propose 
approaches to overcome the shear effect, 
one of which is MITC3 (3-node triangular 
mixed interpolation of tensorial 
components) developed by Lee & Bathe [2]. 
MITC3 plate element was developed 
through the ''mixed interpolation of 
tensorial components'' (MITC) concept, 
plate elements based on this approach have 
been able to give good results on 
quadrilateral elements [3],[4]. 

The development and research of the MITC3 
element can be found in [1],[2], and [5]. 
Research on buckling analysis using the 
finite element method has been carried out 
[6]-[7]. In this paper, to show the 
performance and convergence behavior of 
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MITC3, we conducted a buckling analysis of 
the skew plate using MITC3 with varying 
length to width ratios (L/h), and skew angle 
(θ). Reference solutions from the literature 
were then used to validate the results. 

 

2. REISSNER-MINDLIN PLATE THEORY 

Strain-Displacement Equation 

According to Reissner-Mindlin plate first-
order shear deformation plate theory [9], 
the displacement field can be declared as: 
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where u, v, and w are displacements of the 
mid-plane of the plate, βx and βy represent 
the rotations of the transverse normal about 
the x and y axes, respectively. 
The linear strains are given by: 
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The notation of βx,x, and βy,y state the first 
derivatives with respect to x and y 
respectively of βx, w,x, and w,y  are the first 
derivatives with respect to x and y 
respectively of vertical displacement w. 

 

Constitutive Equations 

According to hook law’s the stress in the 
plane can be declared as: 
 

    E = 

 
(4) 

 
The shear stress is as follows 
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(5) 

The constitutive equations can be simplified 
as: 
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Where the matrix of material is: 
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(7) 

 
The notation of E declares the modulus of 
elasticity, v is Poisson’s ratio, and k= 5/6 is 
the shear correction factor.   

 

3. THE FORMULATION OF MITC3 PLATE 
ELEMENT 

MITC3 is the element proposed by Lee and 
Bathe, this element is based on the concept 
of “mixed interpolation of tensorial 
components” (MITC) by Dvorkin and Bathe 
[4] which uses the tying points to get the 
shear strain matrix. 
MITC3 element has 3 nodes with 3 degrees 
of freedom for each node, namely: wi 
(translation in the z-direction) βxi (rotation 
in the z-x plane), and βyi (rotation in the z-y 
plane). 
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Figure 1. MITC3 elements with 3 nodes and 
3 dof per node. 

 
Independent rotation field βx and βy and 
displacement w are declared as: 
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Where Ni is the linear shape function at 
node-i. 
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The Bending Strain for MITC3 

The relationship between nodal variables 

and curvature  is: 
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The Shear Strain for MITC3 

 
Figure 2. Tying point 

 
The tying point is chosen in the mid-points 
of sides 1-2, 1-3, and 2-3. Distribusi   is 

assumed constant ξ and   is assumed 

constant along . 
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The value of βξ and βη, at the tying points, is 
the average of the values for each corner of 
the side, then:  
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Hence, the shear strain matrix as below; 
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The Shear Strain for MITC3 
The total energy due to bending and 

shear can be stated as: 
 

int int int
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(14) 

 

Where int , int
b , and int

s  are internal, 

bending, and shear energy respectively. 
The total stiffness due to bending, and 

shear can be expressed as: 
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Where 
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4. BUCKLING ANALYSIS 

in the case of buckling, the thing to be 
achieved is to get the value of the critical 
buckling load due to the application of the 
load and the buckling mode. Getting it can be 
solved through the eigenproblem [10]: 
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Where, 

 k = Structural Stiffness Matrix 

crN = Critical buckling load 

 Gk = Geometric stiffness matrix 

 d = mode shape 

 

Matriks kekakuan geometri 

The internal energy equation for membrane 

deformation is 
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The nodal displacement vectors 
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The geometric stiffness matrix is as follows 
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5. NUMERICAL ANALYSIS 

Numerical analysis was carried out on the 
fully modeled skew plate that was 
supported by clamped (w=0, βx=0, and βy=0) 
on each side, the plate was subjected to a 
uniform compressive uniaxial in-plane load. 
In this research, the skew plate will be 
analyzed using variations in length to 
thickness ratio of L/h = 100 and L/h = 1000. 
The analysis was performed using 
variations in mesh size (N × N × 2) of 4 × 4 × 
2, 8 × 8 × 2, 16 × 16 × 2, 32 × 32 × 2, the 
element was analyzed at several variations 
of skew angle of 45˚, 60˚, 75˚. Validating 
plate convergence (L/h=100) due to 
compressive uniaxial load, critical buckling 
load is given by Kumar et al [7].  
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Figure 3. The modeling of the skew plate 
with CCCC boundary conditions. 

 

 
 

Figure 4. The geometry of plates under 
uniform compressive load. 

 

Table 1. Critical buckling load Ncr of CCCC 
skew plate with L/h=100. 

N × N × 2 Mode 
number 

Skew angle θ 

θ = 45˚ θ = 60˚ θ = 75˚ 

32 × 32 × 2 

1 5.080 7.675 9.502 

2 5.572 8.651 10.922 

3 8.930 14.230 18.275 

4 9.647 16.556 23.088 

5 12.642 19.619 23.963 

Kumar et 
al. Error! 
Reference 
source 
not 
found.] 

1 5.110 7.612 9.431 

 

 

Table 2. Critical buckling load Ncr of CCCC 
skew plate with L/h=100. 

N × N × 2 Mode 
number 

Skew angle θ 

θ = 45˚ θ = 60˚ θ = 75˚ 

4 × 4 × 2 1 5.080 7.675 9.502 

8 × 8 × 2 1 5.572 8.651 10.922 

16×16×2 1 8.930 14.230 18.275 

32×32×2 1 9.647 16.556 23.088 

Kumar et 
al. Error! 
Reference 
source 
not 
found.] 

1 5.110 7.612 9.431 

 

 
Figure 5. Critical buckling load of CCCC 

skew plate (L/h = 100) with skew angle θ = 
30. 

 
From the numerical analysis in Table 1, 
Table 2, and Fig 5, critical buckling load of 
skew plate with ratio the ratio L/h=100 is 
subjected to uniform compressive load, 
mesh 4 × 4 × 2 to mesh 32 × 32 × 2, the 
difference of skew plate θ = 45˚ to the 
reference solution is 0,591% - 1550.61%, θ 
= 60˚ is 0,831% - 1842,98%, and θ = 60˚ to 
the reference solution is 0,755% - 
2078,08%. It shows that the MITC3 
elements converge to the reference solution 
in each skew angle. At the fine mesh, skew 
plate θ = 45˚ has a smaller difference to the 
reference solution. 
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Figure 6. Critical buckling load of CCCC 

skew plate (L/h = 100) with skew angle θ = 
60. 

 

Fig. 6 indicates that the MITC3 elements 
converge to the reference solution. in fine 
mesh, mode 1 skew plate θ = 60˚ has bigger 
critical buckling than θ = 45˚, the difference 
is 2.595. In addition, the skew plate with θ = 
60 has a bigger difference to the reference 
than θ = 45. 

 

 
Figure 7. Critical buckling load of CCCC 

skew plate (L/h = 100) with skew angle θ = 
60. 

 
Fig. 7 represents that a plate with skew 

angle θ = 75˚ has a bigger critical buckling 
load than θ = 60˚, the difference of critical 
buckling loaf between θ = 75˚ and θ = 45˚ is 
1,827. The unique result is that θ = 75˚ has a 
smaller difference to the reference solution 
than θ = 60˚, From the three skew angles, it 
is obtained that θ = 60˚ has the largest 
difference to the reference solution than θ = 
45˚, and θ = 75˚.  

 

 
Figure 8. Critical buckling load of CCCC 

skew plate (L/h = 100) according to skew 
angle. 

 
From Fig 8, it can be seen the effect of 
increasing the skew angle on the value of the 
critical buckling load, the skew plate with a 
ratio of L/h =100, the greater the skew angle, 
the greater the value of the critical buckling 
load. Another result is that the skew angle θ 
= 45˚ has the smallest difference to the 
reference solution. 
 

Table 3. Critical buckling load Ncr of CCCC 
skew plate with L/h =1000. 

N × N × 2 Mode 
number 

θ = 45 

4 × 4 × 2 1 7248.104 

8 × 8 × 2 1 168.136 

16 × 16 × 2 1 13.940 

32 × 32 × 2 1 5.806 

 

Table 4. The first five non-dimensional 
critical buckling load Ncr of CCCC skew plate 

with L/h =1000. 

N × N × 2 Mode 
number 

θ = 45 

32 × 32 × 2 

1 5.806 

2 6.442 

3 11.200 

4 12.304 

5 15.582 
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Table 5. Critical buckling load Ncr of CCCC 
skew plate with L/h =1000. 

N × N × 2 Mode 
number 

θ = 60 

4 × 4 × 2 1 13492.496 

8 × 8 × 2 1 297.078 

16 × 16 × 2 1 21.155 

32 × 32 × 2 1 8.554 

 

Table 6. The first five non-dimensional 
critical buckling load Ncr of CCCC skew plate 

with L/h =1000. 

N × N × 2 Mode 
number 

θ = 60 

32 × 32 × 2 

1 8.554 

2 9.796 

3 16.930 

4 20.622 

5 23.610 

 

Table 7. Critical buckling load Ncr of CCCC 
skew plate with L/h =1000. 

N × N × 2 Mode 
number 

θ = 75 

4 × 4 × 2 1 19014.590 

8 × 8 × 2 1 431.685 

16 × 16 × 2 1 29.349 

32 × 32 × 2 1 10.769 

 

Table 8. The first five non-dimensional 
critical buckling load Ncr of CCCC skew plate 

with L/h=1000. 

N × N × 2 Mode 
number 

θ = 75 

32 × 32 × 2 

1 10.769 

2 12.713 

3 21.547 

4 29.076 

N × N × 2 Mode 
number 

θ = 75 

5 31.718 

 

From the analysis in tables 4 – 8, MITC3 
elements converge to the reference solution 
but there is a large value gap between the 
coarse and fine mesh. when the L/h ratio 
gets larger, the MITC3 element requires a 
finer mesh to achieve convergence, in which 
case the element must be able to qualify as a 
Kirchhoff plate. where the element must be 
able to eliminate the effect of shear as the 
plate gets thinner. 

Furthermore, the analysis obtained that 
increasing the skew angle θ and the ratio of 
L/h  caused an increase in the value of 
critical buckling load. 

 

6. CONCLUSION 

Conducting a buckling analysis in the case of 
a skew plate using the MITC3 element, the 
results show that the MITC3 element 
convergence to the reference solution at 
each skew angle,  and in the case of ratio 
plates of L/h =100 and L/h =1000. Critical 
buckling load value depends on length to 
width ratios L/h and skews angles θ, 
increasing the L/h and θ ratio caused an 
increase in the value of critical buckling load. 
We conclude MITC3 element can be used to 
solve the eigenvalue problem. 
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