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ABSTRACT 

Efforts to develop existing infrastructure facilities are highly regarded in order to keep up 
with capacity demand and upgrade changes in data trends. To obtain the best users’ 
interest in the facilities that aligns management development plan and schedule, a 
questionnaire is commonly conducted. Datasets acquired from questionnaire featuring 
satisfactory level such as Likert scale tends to be ordinal. Ordinality using standard 
Pearson correlation lean towards weak relationship. Traditional PCA, relying on Pearson 
correlation, may struggle to capture the nuanced relationships within such ordinal data, 
leading to a loss of valuable information. Through a comparative analysis of PCA results 
using both covariance matrix and conventional Pearson correlation, this paper 
demonstrates the efficacy of the proposed methodology in uncovering latent patterns and 
relationships within the questionnaire responses.  

Keywords: questionnaire, Likert scale, PCA, ordinal dataset, Pearson correlation, low 
correlation, variance, covariance matrix. 
 

1. PRELIMINARY 

This paper intends to present a method 
used in reviewing a data set. The data set is 
an output from questionnaires distributed 
among respondents asking their level of 
satisfactory over an existing ferry port 
terminal. The purpose of the questionnaire 
is to assess facilities within the port 
terminal for further development. The 
intended development has been including 
capacity increase. To align with budget 
limit and economic feasibility, not all 
facilities are to be expanded. Some 
facilities are limited to have new interior 
while the others would be expanded in 

capacity. To ensure the development plans 
accommodate commercial mission of the 
management and the users’ comforts, the 
management decided to carry out the 
questionnaire. One way the purpose of the 
questionnaire is carried out is by 
observing facilities with least satisfactory 
responds from the users (Ferry 
passengers). The satisfactory data that was 
acquired, set to be in a range for each 
question.  

The objective of the analysis, statistically is 
to assess the component with major 
influence with Principal Component 
Analysis (PCA). Due to its non-linearity 
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and low-correlation features, the dataset 
turned out to be one of PCA pitfall in 
pulling conclusion. 

Principal Component Analysis (PCA) 
stands as a powerful method of 
multivariate analysis, renowned for its 
ability to extract meaningful patterns and 
dimensions from complex datasets. Its 
application spans across fields, from image 
processing to social sciences, enabling 
researchers to uncover hidden 
relationships, reduce dimensionality, and 
pave the way for more concise data 
representation. However, in the pursuit of 
these goals, the efficacy of PCA can be 
challenged when working with low 
correlation data. While PCA thrives in 
scenarios where variables exhibit 
substantial pairwise correlations, it 
encounters limitations when confronted 
with datasets where correlations are 
notably weakened.  

Traditional PCA techniques, which rely on 
maximizing variance and exploiting 
correlations between variables, may yield 
results that appear less insightful and less 
indicative of underlying structures in the 
absence of strong relationships between 
variables. In response, this study embarks 
on a focused exploration of conducting 
PCA on datasets characterized by low 
correlations among variables. By 
dissecting the intricacies of low 
correlation data and its implications, we 
uncover strategies to adapt and harness 
PCA's potential even in situations where 
traditional correlations are diminished. 

This paper delves into the challenges of 
PCA when applied to Likert-scale 
questionnaire data. Likert-scale responses, 
tends to be ordinal. It often exhibits low 
correlation, which is the common pitfall of 
traditional PCA. Recognizing these 
limitations, this study proposes an 
approach by harnessing covariance matrix 
to enhance variance exploitation in Likert-
scale data analysis. 

 

The research underscores the inherent 
complexities of Likert-scale data, where 
respondents provide subjective ratings 
that may not adhere strictly to numerical 
order. Traditional PCA, relying on Pearson 
correlation, may struggle to capture the 
nuanced relationships within such ordinal 
data, leading to a loss of valuable 
information. To address that, the authors 
attempted to apply covariance matrix 
within PCA to optimize the use of variance. 

 
2. LITERATURE REVIEW 

As Jolliffe et al. explained in his paper [1], 
PCA is basically a technique in multivariate 
statistics. Addressing above issues with 
multiple variables obtained from 
respondents’ responses, the common first 
step is usually dimensionality reduction of 
a dataset. In this case, one thing to keep in 
mind while reducing data dimensionality 
is retaining as much of the original 
variation as possible. A method of 
standardized data incorporated in PCA’s 
early step processes data dimensionality 
reduction [2] while retaining original 
variation. The PCA transforms the data 
into a new set of variables, known as 
principal components. Basically, we could 
use PCA analysis to determine the most 
important variables among multiple 
variables assumed to be linearly related 
with the unknown underlying factors. In 
their theoretical words, principal 
component sets are linear combinations of 
the original variables and are ordered in 
terms of their nature to explain the 
variation in the data. 

PCA can technically be used for a variety of 
purposes, including data compression, 
feature extraction, and data visualization. 
A paper by Karamizadeh et al. [3] through 
its references mentions that PCA is 
particularly useful when dealing with 
datasets that have a large number of 
variables, as it allows for a more 
manageable representation of the data. 
Karamizadeh [3] also concluded PCA’s key 
advantages such as its low noise 
sensitivity, the decreased requirements 
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for capacity and memory, and increased 
efficiency given the processes taking place 
in a smaller dimension.  

PCA’s pitfall is when the dataset is small 
and has well distributed classes. In that 
case PCA becomes less relevant [3]. An 
interesting paper by Jeong et al. in 2009 [4] 
explains that PCA is also commonly 
considered as a black box due to its 
difficult interpretations. Shlens in 2014 [5] 
has made a good tutorial PCA reference. In 
2019 another paper by Björklund [6] has 
underlined what to notice during PCA 
analysis. This has something to do with 
how we look at our principal components. 
Another reference that discusses PCA 
method is by Abdi et al. [7] in 2010. A 
paper by Guerra et. al [8] in 2021 provides 
good guidance for PCA that processes non-
ordinary data. As our data from 
questionnaire may not provide good 
linearity, the correlation from standard 
Pearson is weak. Questionnaire data that 
features Likert scale is usually ordinal. 
Therefore, the use of other correlation 
factors such as Spearman’s rank or 
Kendall’s tau [9], [10] is suggested. 

PCA is a good data summary when the 
interesting data set patterns increase the 
variance of projections onto orthogonal 
components. Yet, PCA also has limitations 
that must be considered when interpreting 
the output: the underlying structure of the 
data must be linear, patterns that are 
highly correlated may be unresolved 
because all PCs are uncorrelated, and the 
goal is to maximize variance and not 
necessarily to find clusters. As implied by 
Lever et al. [11], conclusions made with 
PCA must take these limitations into 
account. As with all statistical methods, 
PCA can be misused. The scaling of 
variables can cause different PCA results, 
and it is very important that the scaling is 
not adjusted to match prior knowledge of 
the data. If different scaling sets are tried, 
they should be described. PCA is a tool for 
identifying the main axes of variance 
within a data set and allows for easy data 
exploration to understand the key 
variables in the data and spot outliers. 
Properly applied, it is one of the most 
powerful tools in the data analysis tool kit. 

 

 

Figure 1 – Several data sets where PCA has limited use [11]. 

 
The first step as mentioned earlier is to 
standardize the data. This step is to have a 
mean of zero and a standard deviation of 
one to all variables. By subtracting the 
mean from all the data set, basically we 
shift the center of data to zero. The 
purpose is to ensure that all variables are 
on the same scale and have equal 
importance in the analysis. Following step 
is then to determine the principal 
components calculated using eigenvectors 

and eigenvalues of the covariance matrix 
from the standardized data.  

From what the author learns, this dataset 
transformation by determining eigen 
vectors and eigenvalues of a matrix is the 
core of PCA. Through covariance matrix, 
the goals are to minimize data redundancy 
while maximizing variance. The 
covariance matrix that we all know, will be 
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the measure of how much the dimensions 
vary from the mean. 

The first principal component explains the 
most variation in the data, with 
subsequent components explaining 
decreasing amounts of variation. The 
number of principal components to retain 
depends on the amount of variation one 
wishes to preserve and the purpose of the 
analysis. Typically, one retains enough 
principal components to explain a 
substantial portion of the total variation, 
while discarding the rest. 

3. OUR CASE 

Figure 2 describes the situation with our 
data. Though the data points look only very 
few, there are actually about two hundred 
data points in the plot. Many of them are 
repeating, so they overlap to each other 

and still not visible even with 3D plot 
(figure 2 – top left).  An ideal cumulative 
variance should be above 90% for comfort 
interpretation.  The plot shows about 80%. 
A comparison for an ideal PCA analysis is 
displayed in figure 3.  

Among implications of low cumulative 
variance is weak correlation as referred in 
[12] and [13]. Also noticeable from figure 
2 (bottom left), the principal components 
were plotted in blue and red lines from the 
first two columns of the entire dataset. 
Though the lines are almost not visible, red 
line is slightly longer than the blue lines 
saying that principal component (PC1) 1 is 
more dominant than PC2. However, as the 
lines are too short compared the data plot, 
we can tell the whole PCA analysis in this 
case is not ideal.  

 

  

 

  

Figure 2 - PCA output from our case. PC1 vs. PC2 (arrowed).  
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Figure 3- Ideal data set for ordinary PCA 

 
Intriguingly, one context in which the 
challenge of low correlation data is often 
encountered is the analysis of 
questionnaire outputs. Consider a scenario 
where respondents evaluate various 
aspects of a service, facility, or experience 
using Likert scale responses. Such data is 
inherently characterized by the limited 
range of response options, which can 
result in responses exhibiting low pairwise 
correlations across variables. For instance, 
a user satisfaction questionnaire for port 
facilities may involve respondents 
assigning scores to different criteria, such 
as cleanliness, accessibility, and staff 
behavior. While these aspects are all 
important, they might not necessarily 
correlate strongly due to individual 
variations in perceptions and preferences. 
In the presence of low correlation data, 
PCA's interpretability is notably affected 
for several reasons: 

Diminished Information Capture: 
Traditional PCA relies on capturing 
variance and correlations to create 
principal components. In the absence of 
strong correlations, the captured variance 
might be dominated by noise, leading to 
principal components that do not 
meaningfully represent the underlying 
data structure. 

Lack of Clear Dimensionality: Principal 
components, derived from correlated 
variables, often align with underlying 
dimensions in the data. However, in the 
case of low correlations, the relationships 
between variables are weak, making it 

challenging to identify distinct dimensions 
that can be easily interpreted. 

Unstable Loadings: In low correlation 
scenarios, the loadings of variables onto 
principal components become unstable 
and susceptible to minor variations in the 
data. This instability can make it difficult to 
confidently interpret which variables 
contribute most to a given component. 

Further we illustrate the challenges and 
complexities of applying PCA on low 
correlation data, delve into the 
fundamental numerical formulas that 
underpin PCA. First thing, the covariance 
matrix of the variables, we denoted as 
(Cov), quantifies the relationships 
between pairs of variables. For highly 
correlated variables, (Cov) has significant 
off-diagonal elements, indicating strong 
pairwise associations. In contrast, low 
correlations lead to a nearly diagonal 
covariance matrix with small off-diagonal 
elements. 

Carrying out PCA involves finding the 
eigenvectors and eigenvalues of the 
covariance matrix (Eigen Decomposition). 
Eigenvectors (v) represent directions in 
the original variable space, and 
eigenvalues (λ) quantify the variance 
captured by each eigenvector. Eigenvalues 
indicate the proportion of total variance 
explained by each principal component. In 
low correlation data, eigenvalues may 
show less distinct separation, making it 
harder to determine the significant 
components. 
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Principal components (PCs) are linear 
combinations of the original variables that 
capture maximal variance. The first PC 
(PC1) corresponds to the direction of 
maximum variance, with subsequent PCs 
orthogonal to previous ones. For low 
correlation data, PCs might not represent 
clear underlying dimensions, leading to 
less informative component 
interpretation. 
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In the following sections, we will delve 
deeper into the implications of low 
correlation data on PCA, discussing 
strategies for mitigating challenges and 
enhancing interpretability. Through 
illustrative examples and practical 
insights, we aim to provide a 

comprehensive understanding of applying 
PCA to scenarios where correlations 
among variables are limited. 

Correlation vs. Covariance in the 
Context of PCA: 

One fundamental aspect that significantly 
influences the application and 
interpretation of Principal Component 
Analysis (PCA) is the choice between 
working with correlation matrices or 
covariance matrices. Both correlation and 
covariance matrices serve as the 
foundation of PCA, yet they embody 
different perspectives that can impact the 
results and insights gained from the 
analysis. Understanding the nuances of 
using correlation versus covariance 
matrices is pivotal for effectively 
conducting PCA, particularly in scenarios 
involving low correlation data [14].  

 

 
 

Figure 4 – PCA with correlation vs. PCA with covariance 

 
Covariance Matrix: 

The covariance matrix, denoted as Σ, 
quantifies the strength and direction of 
linear relationships between pairs of 
variables in a dataset. Each element in the 
matrix represents the covariance between 
two variables, reflecting how their values 

change together. Mathematically, the 
covariance between two variables Xi and Xj 
is given by: 
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In the context of low correlation data, the 
covariance matrix can exhibit a 
pronounced diagonal structure with small 
off-diagonal elements. This occurs when 
variables exhibit limited linear 
relationships. As a result, PCA based on the 
covariance matrix may emphasize 
variance primarily along the axes of high 
variance variables, potentially masking 
valuable insights and overlooking 
dimensions that contribute to data 
variation but are not strongly correlated. 

Correlation Matrix: 

In contrast, the correlation matrix, often 
denoted as R, standardizes the covariance 
matrix by dividing each element by the 
product of the standard deviations of the 
two variables. The resulting values, known 
as correlation coefficients, range between 
-1 and 1, representing the strength and 
direction of linear relationships while 

accommodating for differing scales. The 
correlation between variables Xi and Xj is 
calculated as: 

( )
( ),

,
 

i j

i j

i j

Cov X X
X X

 
=  

Applying PCA to a correlation matrix is 
advantageous in scenarios where low 
correlation data is prevalent. By 
transforming the original variables into 
standardized versions, the correlation 
matrix accentuates the relative strength of 
relationships, facilitating the identification 
of underlying patterns that might 
otherwise remain obscured by scale 
discrepancies. Moreover, correlation-
based PCA yields principal components 
that emphasize dimensions defined by the 
patterns of highest joint variability, rather 
than being overly influenced by high-
variance variables. 

 

   
 

Figure 5 – Principal Components after covariance matrix. PC1 vs PC2 (left); PC1 vs. PC3 (right) 

 
Considerations and Interpretation: 

As we can look at figure 4 and figure 5, 
though it is not significant, the use of 
covariance helps increasing the use of 
variance during PCA analysis. When 
employing PCA on low correlation data, 
the choice between covariance and 
correlation matrices influences the 
outcome, interpretation, and applicability 
of the analysis. While the covariance 
matrix preserves the information about 
both the magnitude and direction of 
relationships, it may inadvertently 
magnify variables with greater variances. 
The correlation matrix, on the other hand, 

addresses scale disparities, enabling a 
more balanced representation of variable 
relationships. 

Ultimately, the decision between using 
covariance or correlation matrices in PCA 
depends on the research objectives, the 
nature of the data, and the intended 
emphasis on different aspects of 
relationships. When variables exhibit low 
correlation, utilizing the correlation matrix 
can provide a clearer view of latent 
dimensions that contribute to data 
variation, enhancing the interpretability of 
PCA results and uncovering insights that 
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might otherwise remain hidden in the 
shadows of raw covariance. 

As we delve further into the application of 
PCA on low correlation data, we will 
explore practical strategies for navigating 
these choices and leveraging the inherent 
strengths of both correlation and 
covariance matrices to extract meaningful 
dimensions and patterns from the data. 

What Next 

The authors limit the discussion in this 
paper until the use of covariance matrix as 
the comparison of correlation matrix in 
PCA. The discussion below this sub point is 
intended to be featured in other paper.  

In cases with our questionnaire data 
featuring Likert scale, that lacks strong 
correlations, as we notice above, 
traditional PCA might not yield meaningful 
results. Since the mission is to maximize 
variance among data points to capture 
more interpretable multivariate aspects, it 
is advisable to consider more techniques 
like Factor Analysis (FA).  

In similar cases to datasets with low 
correlation, preprocessing data is 
necessary. This could be carried out with 
other methods other than FA. In our case, 
the nature of dataset seems non-linear.  

The correlation matrix, as we know, is a 
normalized version of the covariance 
matrix. This normalization process, 
therefore, scales the values to lie between 
-1 and 1, which makes them easier to 
interpret. Please be noted, whenever a 
covariance matrix is identical to 
correlation matrix, this could imply that all 
of the variables (columns in the matrix) 
have a standard deviation of 1. This is due 
to the dataset has been standardized, 
which is a common preprocessing step in 
many data analyses. This may lead to a 
false perception that the dataset is 
perfectly positively correlated. Even if that 
is true, it does not mean the dataset is 
perfectly correlated, while the actual linear 
relationships (correlations) are weak. 

Preprocessing data by handling missing 
data points and outliers could be carried 
out carefully, if necessary, just to ensure 
the dataset is not discontinued [15]. 
Specifically for dataset that features Likert 
scale, it is more likely to be ordinal. The 
categories are in good order but not 
consistently different among the data 
points. This is the cause why the dataset 
has weak correlation. The use of standard 
Pearson correlation may not be suitable 
for that case. It is suggested by papers [9], 
[10] to use Spearman’s rank or Kendall’s 
tau. Both measures are generally adequate 
and suitable for ordinal data. 

 
4. CONCLUSION 

PCA is a useful tool for analyzing dataset to 
find major influencing component within. 
However, PCA has limitation in its 
linearity. PCA exploits variances among 
data points within the dataset. When a 
dataset has low variance due to low 
correlation, this will affect the outcome. 
The produced principal components will 
not be significant. This is measured by its 
use of variance that is lower than 90%. The 
correlation using standard Pearson may be 
altered to optimize the use of variance.  

Questionnaire output usually features 
Likert scale. The scale such as customer 
satisfactory index that ranges the answers 
from determined scale (for example 1 to 
5), has meaningful order. However, among 
questions in the questionnaire, when 
plotted in a scatter plot without looking at 
the questions, statistically only shows 
repeating numbers and has almost no 
different compared to the other questions. 
This ordinal nature of dataset causes weak 
relationships among the data points and 
therefore low correlation.  

An option to look at the covariance matrix 
of the dataset to be implemented in PCA 
turns to be increasing the use of variance. 

Through a comparative analysis of PCA 
results using both covariance matrix and 
conventional Pearson correlation, this 
paper demonstrates the efficacy of the 
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proposed methodology in uncovering 
latent patterns and relationships within 
the questionnaire responses. The findings 
not only contribute to the refinement of 
PCA applications in ordinal data analysis 
but also offer practical insights for 
decision-makers involved in port facility 
development planning. This approach 
offers an alternative to extract meaningful 
information from Likert-scale data 
characterized by low correlation. 
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