IDENTIFIKASI KEBUTUHAN PELANGGAN DAN SPESIFIKASI PRODUK RANGKA SEPEDA KAYU TIPE SEPEDA GUNUNG

Nurjannah*1, Rakhma Oktavina², Bella Oktavia Marpaung³, Reinaldy Bayu Setiawan⁴, Danang Sudarwoko Adi⁵, Yusup Amin⁶

1,2,3,4 Program studi Teknik Industri, Universitas Gunadarma 5,6 Pusat Riset Biomassa dan Bioproduk Badan Riset Dan Inovasi Nasional (BRIN) E-mail: nurjannah@staff.gunadarma.ac.id

ABSTRAK

Sepeda, sebagai alat transportasi roda dua yang banyak digunakan oleh berbagai kalangan usia, menawarkan fleksibilitas dan sifat ramah lingkungan yang membuatnya menjadi pilihan populer. Selain berfungsi sebagai alat transportasi yang ekonomis dan efisien, sepeda juga sering kali menjadi hobi bagi banyak orang. Komponen kunci dari sebuah sepeda adalah rangka, yang berperan penting dalam menahan beban pengguna serta mempengaruhi desain dan kenyamanan. Salah satu produk yang menghadapi tantangan dalam hal desain dan kenyamanan adalah rangka sepeda kayu mountain bike yang dikembangkan oleh Badan Riset dan Inovasi Nasional. Meskipun produk ini sudah memenuhi kriteria kegunaan, masalah utama terletak pada desain dan kenyamanan konsumen. Tujuan dari penelitian ini yaitu mengidentifikasi kebutuhan pelanggan terhadap rangka sepeda kayu berjenis sepeda gunung, serta mengetahui spesifikasi produk inovasi dari sepeda kayu. Metode yang digunakan untuk mengidentifikasi kebutuhan pelanggan yaitu *Quality Function Deployment* (QFD), sedangkan spesifikasi didapatkan dengan membandingkan beberapa ukuran sepeda gunung yang ada dipasaran. Hasil penelitian menunjukkan terdapat 12 kebutuhan pelanggan dengan 9 karakteristik teknis yang nanti akan menjadi spesifikasi produk.

Kata kunci: Kebutuhan Pelanggan, Rangka Sepeda Kayu, Sepeda Gunung, Spesifikasi produk.

ABSTRACT

Bicycles, as a two-wheeled means of transportation widely used by people of all ages, offer flexibility and eco-friendly properties that make them a popular choice. Besides serving as an economical and efficient means of transportation, bicycles are also often a hobby for many people. A key component of a bicycle is the frame, which plays an important role in bearing the weight of the user as well as influencing design and comfort. One product that faces challenges in terms of design and comfort is the wooden mountain bike frame developed by the National Research and Innovation Agency. Although this product meets the usability criteria, the main problem lies in design and consumer comfort. The purpose of this study is to identify customer needs for a wooden mountain bike frame, as well as to determine the specifications of an innovative wooden bicycle product. The method used to identify customer needs is Quality Function Deployment (QFD), while specifications are obtained by comparing several sizes of mountain bikes on the market. The results showed that there were 12 customer needs with 9 technical characteristics that would later become product specifications.

Keywords: Customer needs, wooden bike frame, mountain bike, product specifications.

DOI: /10.24853/jisi.12.1.117-130

P-ISSN: 2355-2085 E-ISSN: 2550-083X

1. PENDAHULUAN

Sepeda merupakan alat transportasi roda dua yang digunakan oleh semua orang dari berbagai kalangan usia karena fleksibilitas dan sifatnya yang ramah lingkungan. Penggunaan moda transportasi sepeda cenderung sangat ekonomis dan efisien. Tidak hanya sebagai alat transportasi, sepeda juga menjadi salah satu hobi yang banyak diminati oleh masyarakat. Komponen terpenting dari sebuah sepeda terletak pada rangka sepeda yang berfungsi menahan beban pengguna dan desain pada sepeda. Menurut data Asosiasi Industri Persepedaan Indonesia (AIPI), bahwa penjualan sepeda lokal mencapai dua kali lipat jika dibandingkan pada tahun 2019 dengan presentase peningkatan penjualan sebanyak 14% dan dengan total jumlah penjualan sepeda lokal yang hampir menyentuh 8.000.000 unit (Asosiasi Industri Persepedaan Indonesia, 2020). Saat ini jenis sepeda pun beraneka macam, mulai dari sepeda kota atau city bike, sepeda gunung atau mountain bike (MTB), sepeda balap atau road bike, dan lain-lain. Secara umum sepeda gunung dibagi menjadi 5 jenis menurut fungsinya, diantaranya yaitu Cross Country (XC), Trail XC, All Mountain (AM), Free Ride (FR), dan Down Hill (DH). Dalam makin berkembangkanya teknologi pembuatan sepeda telah memunculkan inovasi-inovasi yang semakin maju. diantaranya inovasi dalam pembuatan frame sepeda memanfaatkan bahan baku Penggunaan kayu sebagai material dalam pembuatan frame sepeda, selain memiliki nilai estetika yang dan ramah lingkungan, tinggi juga dapat memanfaatkan sisa limbah kayu yang ada agar memiliki nilai jual yang lebih (Adi dkk., 2016). Pemanfaatan limbah kayu ini tidak memberikan solusi terhadap pengelolaan limbah, tetapi juga meningkatkan keberlanjutan produk kayu dengan memperluas potensi aplikasinya dalam industri (Ismayati dkk., 2023).

Salah satu produk rangka sepeda kayu adalah prototipe mountain bike yang dihasilkan oleh Badan Riset dan Inovasi Nasional (BRIN). Permasalahan yang terjadi pada produk rangka sepeda kayu adalah produk sudah memenuhi kriteria dari segi kegunaan, tetapi masih kurang memperhatikan dari segi desain dan kenyamanan konsumen seperti keergonomisan produk, sehingga produk rangka sepada kayu belum sesuai dengan kebutuhan konsumen. Hal ini terjadi karena dalam proses pembuatan desain rangka sepeda kayu belum melakukan identifikasi kebutuhan pelanggan. Berdasarkan permasalahan tersebut, maka pada penelitian ini dilakukan pengembangan konsep produk agar produk rangka

sepeda kayu tipe mountain bike dapat diidentifikasi dan karakteristik teknis produk rangka sepeda kayu yang sesuai dengan kebutuhan pelanggan dan dikhususkan kepada pengguna sepeda mountain bike.

Solusi dari permasalahan tersebut salah satunya dapat menggunakan metode Ouality Function Deployment dan perbandingan beberapa produk sejenis (benchmarking) pendekatan serta anthropometri. Quality Function Deployment (QFD) merupakan suatu proses atau mekanisme terstuktur untuk menentukan kebutuhan pelanggan dan menerjemahkan kebutuhan-kebutuhan tersebut ke dalam kebutuhan teknis yang relevan. Penggunaan dimaksudkan agar masing-masing fungsional dan tingkat organisasi dapat mengerti dan bertindak. Metode QFD merupakan metode yang memperhatikan kebutuhan konsumen yang akan diterjemahkan menjadi karakteristik Penggunaan benchmarking dan data antropometri perancangan tersebut berguna dalam membandingkan ukuran sepeda yang banyak dijual dipasaran dengan sepeda kayu yang ada saat ini sehingga memperoleh produk yang lebih nyaman.

Tujuan dari penelitian ini yaitu mengidentifikasi kebutuhan pelanggan terhadap rangka sepeda kayu sepeda gunung. Tujuan lainnya vaitu mengetahui spesifikasi produk inovasi yaitu rangka sepeda kayu tipe sepeda gunung yang terpilih. Harapan dari penelitian ini yaitu meningkatkan kepuasan pelanggan terhadap penggunaan sepeda kayu yang sudah ada dan memberikan kenyamanan dalam penggunaan sepeda kavu tipe sepeda gunung.

2. TINJAUAN PUSTAKA

2.1 Quality Function Deployment

Function Deployment (OFD) Quality merupakan suatu pendekatan yang sistematis untuk mengidentifikasi dan mengintegrasikan kebutuhan serta keinginan pelanggan dalam proses perancangan produk atau jasa. Tujuan utama dari QFD adalah untuk memastikan bahwa produk yang dihasilkan benar-benar memenuhi harapan pelanggan, baik dari segi kualitas, fitur, maupun kinerja.

Keunggulan-keunggulan yang dimiliki oleh Quality Function Deployment terdapat beberapa vaitu sebagai berikut (Wijaya, 2018):

format Menyediakan standar untuk menerjemahkan "Apa" yang harus diperbaiki pada produk atau kebutuhan pelanggan menjadi "Bagaimana" memenuhinya cara karakteristik teknisinya.

- 2. Menolong tim perancang untuk memfokuskan proses perancangan yang di lakukan pada fakta yang ada, bukan pada intuisi.
- 3. Selama proses perancangan, pembuatan kepuasan "direkam" dalam sejumlah matrik sehingga diperiksa ulang serta dimodifikasi pada masa yang akan datang.

2.2 Identifikasi Kebutuhan Pelanggan

Identifikasi kebutuhan pelanggan merupakan bagian yang meliputi seluruh proses pengembangan produk dan tahapan mulai dari spesifikasi kebutuhan produk, seleksi konsep. Pelanggan sendiri adalah sebuah proses yang dibagikan kedalam beberapa tahap yaitu (Ulrich & Epingger, 2001):

- 1. Mengumpulkan Data Mentah dari Pelanggan
- 2. Mengidentifikasi Data Mentah Menjadi Kebutuhan Pelanggan
- 3. Mengorganisasikan Kebutuhan Menjadi Hierarki
- 4. Menetapkan Kepentingan Relatif Kebutuhan

2.3 Karakteristik Teknis Produk

Penentuan karakteristik bertujuan untuk menentukan target apa yang akan dicapai oleh karakteristik teknis suatu produk sehingga dapat memuaskan kebutuhan konsumen. Metode yang digunakan pada langkah ini adalah *Quality Function Deployment* dimana akan menghasilkan sebuah output berupa matriks *House of Quality* (HOQ).

Bagian kedua HOQ adalah pengisian karakteristik teknis (technical response) dari produk atau jasa yang ditawarkan. Terdapat beberapa informasi yang dapat dari technical response, alternatif yang paling umum adalah:

- a. Top level solution measurement or metrics.
- b. Kebutuhan produk atau jasa (*products or service requirements*).
- c. Kemampuan fungsi produk atau jasa (product or service features of capabilities).

Karakteristik teknis dapat diartikan sebagai kumpulan keinginan terhadap suatu produk atau jasa yang ditetapkan oleh pihak perusahaan, dan umumnya disebut sebagai *Substitute Quality Characteristics* (SQCs). Apabila kebutuhan atau keinginan konsumen menunjukkan suara konsumen, maka SQCs menunjukkan suara pengembang atau *Voice Of Developer* (VOD). Dengan menentapkan kedua suara tersbut pada bagian kiri dan atas, maka kita dapat mengevaluasi hubungan keduanya secara sistematis (Cohen, 1995).

2.4 Spesifikasi Produk

Spesifikasi produk adalah suatu uraian yang terperinci mengenai produk dan persyaratan kinerja kebutuhan produk untuk memenuhi kebutuhan konsumen (Irawan, 2017). Spesifikasi produk merupakan suatu uraian yang menjelaskan detaildetail mengenai hal-hal yang harus ada pada produk agar diperoleh kesuksesan komersial, di mana spesifikasi ini juga harus dapat mencerminkan kebutuhan pelanggan, membedakan produk dari produk-produk pesaing, dan secara teknik maupun ekonomis harus direalisasikan (Ulrich & Epingger, 2001). Spesifikasi produk mempunyai empat langkah dalam pembuatan spesifikasi produk sebagai berikut (Irawan, 2017), yaitu:.

- 1. Membuat spesifikasi target
- 2. Menentukan nilai target ideal dan marginal yang dapat dicapai
- 3. Menentukan spesifikasi target akhir produk
- 4. Evaluasi terhadap semua rangkaian penyusunan spesifikasi produk Setelah semua tahapan proses penyusunan spesifikasi produk selesai dilaksanakan dengan telah diperolehnya spesifikasi target akhir dari suatu produk, tim pengembang selanjutnya melakukan evaluasi kembali terhadap hasil yang sudah diperoleh.

2.5 Antropometri

Antropomertri merupakan salah satu ilmu yang berhubungan dengan aspek ukuran fisik manusia dimana aspek fisik tersebut dimensi linear dan juga ukuran dari fisik manusia. Antropometri berasal dari kata *antropos* yang artinya manusia dan metrikos yang berarti pengukuran. Antropomentri juga merupakan salah satu ilku yang mempelajari metode pengukuran dan pemodelan dimensi pada tubuh manusia, serta teknik aplikasi untuk sebuah perancangan (Iridiastadi & Yassierli, 2014).

Antropometri merupakan sebuah studi yang menjelaskan tentang pengukuran dimensi tubuh pada manusia yang meliputi ukuran lingkar pinggang, ukuran saat merentangkan tangan dan berat badan (Wignjosoebroto, 2008).

2.6 Benchmarking

Beberapa ahli telah menyatakan pengertian benchmarking, salah satunya adalah Gregory H. Watson. Menurut Gregory H. Watson benchmarking merupakan suatu proses pengukuran secara sinambung atas proses-proses bisnis suatu organisasi dengan tokoh-tokoh proses bisnis manapun diseluruh dunia, untuk mendapatkan informasi yang akan

membantu upaya organisasi-organisasi tersebut memperbaiki kinerja (Watson, 1996).

Goetsch dan Davis juga berpendapat bahwa, Benchmarking merupakan cara untuk membandingkan dan mengukur jalannya sebuah organisasi atau cara membandingkan dan mengukur internal organisasi secara berulang-ulang dengan organisasi yang mempunyai kelas yang lebih baik dari dalam atau dari luar organisasi perusahaan (Goestsch & Davis, 1997)

Benchmarking juga dapat disebut dengan patok duga, dimana patok duga ini bertujuan untuk menemukan kunci atau rahasia sukses dan kemudian mengadaptasi dan memperbaikinya untuk diterapkan pada perusahaan yang melaksanakan patok dugas tersebut (Pawitra, 1994).

3. METODE PENELITIAN

Penelitian ini menggunakan data primer berupa identifikasi kebutuhan pelanggan dengan menyebarkan kuesioner kepada pengguna sepeda gunung. Responden dipilih secara acak dan menggunakan bantuan gform. Berdasarkan rumus slovin dengan Tingkat kepercayaan 95% maka jumlah responden yang dibutuhkan yaitu berjumlah 100 orang responden. Data Sekunder yang digunakan dalam penelitian ini yaitu data spesifikasi sepeda gunung pembanding yang ada dipasaran seperti Pacific MTB 26", United Stavros 26", dan Polygon Monarch M5 Mountain bike 26".

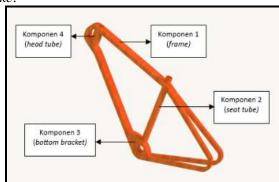
Tahapan berikutnya yaitu pengolahan data dengan menggunakan *Quality Function Deployment* (QFD) untuk identifikasi kebutuhan pelanggan, serta *benchmarking* dan pendekatan anthropometri untuk spesifikasi produk sepeda gunung. Setelah tahapan pengolahan data selanjutnya analisis hasil serta membuat kesimpulan dan saran.

4. HASIL DAN PEMBAHASAN

4.1 Data Produk Referensi Produk Rangka Sepeda Kayu Tipe *Mountain Bike*

Data produk referensi merupakan produk yang dijadikan sebagai acuan konsep dalam penelitian ini, produk yang dipakai merupakan produk rangka sepeda kayu tipe mountain bike. Rangka sepeda kayu tipe mountain bike memiliki ukuran (1005 x 600 x 970) mm, dengan bahan dasar kayu jati platinum, berat 17 kg dan memiliki bentuk rangka seperti pulau Bali. Kayu memiliki karakteristik kayu yaitu nilai kuat lentur kayu (MOR) dan modulus elastisitas (MOE) yang dimana kuat lentur kayu menjadi salah satu sifat mekanik yang paling penting. Kayu jati platinum berumur 5 tahun lebih

baik iika dibandingkan dengan kavu konvensional berumur 10 tahun. Kayu jati platinum umur 5 tahun memiliki MOR senilai 919,79 kg/cm², nilai MOE 100.3 kg/cm², dan rasio TR dimana nilai tersebut hampir sama dengan kayu jati konvensional yang berumur 20-30 tahun. Kayu jati platinum dapat diasumsikan memiliki potensi yang baik untuk digunakan sebagai bahan struktural maupun furnitur (Adi dkk., 2016), serta kayu jati platinum memiliki ketahanan alami yang baik terhadap organisme pemakan kayu dan semakin tua umur kayu akan awet dan kuat (Ismayati dkk., 2023), Berikut merupakan Gambar 2. spesifikasi Produk Referensi Rangka Sepeda Kayu Tipe Mountain Bike.


P-ISSN: 2355-2085

E-ISSN: 2550-083X

Gambar 2 Spesifikasi Produk Referensi Rangka Sepeda Kayu Tipe *Mountain Bike*

Rangka sepeda kayu tipe *mountain bike* memiliki 4 komponen yaitu komponen *frame*, komponen *seat tube*, komponen *bottom bracket*, komponen *head tube*. Berikut merupakan Gambar 3 Gambar Komponen Rangka Sepeda Kayu Tipe *Mountain Bike*.

Gambar 3 Komponen Rangka Sepeda Kayu Tipe *Mountain Bike*

4.2 Penentuan Responden dan Jumlah Responden Produk Rangka Sepeda Kayu Tipe Mountain Bike

Penentuan responden data kebutuhan pelanggan pada produk rangka sepeda kayu tipe *mountain bike* dilakukan dengan penyebaran kuesioner identifikasi

kebutuhan pelanggan yang dibagikan kepada 100 orang responden dengan metode rumus slovin, penyebaran kuesioner melalui google form dengan kriteria yang dibutuhkan yaitu pengguna sepeda gunung dan kisaran berusia 18-35 tahun. Kuesioner identifikasi kebutuhan pelanggan berisikan pertanyaan yang diajukan kepada responden yang diisi dengan jawaban yang bebas tanpa adanya batasan dari tiap responden yang dijadikan landasan sebagai pembuatan kuesioner bobot kepentingan kebutuhan pelanggan. Tujuan dilakukannya hal tersebut adalah untuk mengidentifikasi hal-hal yang diinginkan oleh konsumen terhadap produk sepeda kayu tipe mountain bike. Mission statement

(pernyataan misi) merupakan gambaran dari tujuan dan sasaran produk, serta membantu perusahaan untuk membangun citra yang baik terhadap konsumen. Target konsumen atau pasar dari produk rangka sepeda kayu tipe *mountain bike* adalah tiap individu di usia 18-35 tahun. Berikut merupakan Tabel 1 *Mission Statement*.

Tabel 1 Mission Statement

Pernyataan Misi: Project Rangka Sepeda Kayu Tipe Mountain Bike						
Deskripsi Produk	Suatu komponen utama berupa bentuk rangka sepeda berbahan dasar kayu yang termasuk dalam tipe <i>mountain bike</i> (MTB).					
Sasaran Bisnis Kunci	 Keterimaan sepeda berbahan kayu oleh pengguna sepeda gunung. Dapat bersaing dengan produk kormesial berbahan logam yang sudah ada secara desain dan harga (Rp 3.000.000-Rp 6.000.000). Produk frame sepeda kayu dapat bertahan minimal 5 tahun 					
Pasar Utama	 Pengguna sepeda bike to work. Kolektor sepeda 					
Pasar Sekunder	Pelanggan biasaProfesional pengguna sepeda gunung					
Asumsi-asumsi	 Ergonomis (penempatan <i>frame</i> pada sepeda) konformansi: ukuran rangka sepeda, bobot yang ringan durabilitas: material yg kuat estetika: Desain minimalis 					
Pihak yang terkait	 Pengguna Bagian Produksi Service center 					

4.3 Identifikasi Kebutuhan Pelanggan

Identifikasi kebutuhan pelanggan menggunakan kuesioner sebagai alat bantu. Kuesioner yang digunakan yaitu kuesioner terbuka dan tertutup. Kuesioner terbuka merupakan langkah awal dalam pengumpulan data keinginan dan kebutuhan konsumen dimana kuesioner terbuka ini akan memberikan kesempatan pada responden untuk memberikan jawaban sesuai dengan keinginan responden. Kuesioner terbuka dibuat dengan tujuan untuk mengetahui keinginan responden untuk produk rangka sepeda kayu tipe *mountain bike*. Berikut merupakan Tabel 2 Hasil Kuesioner Terbuka.

Tabel 2 Hasil Penyebaran Kuesioner Identifikasi Kebutuhan Pelanggan

No	Dimensi	Karakteristik	Pernyataan	Jumlah Responde
	2	Produk	2 0111) 444411	n (Orang)
1	Konforman si	Bobot rangka	Produk rangka sepeda kayu tipe <i>mountain bike</i> memiliki berat yang ringan	52
		sepeda kayu	Produk rangka sepeda kayu tipe <i>mountain bike</i> menggunakan jenis material ramah lingkungan	6
			Produk rangka sepeda kayu tipe <i>mountain bike</i> yang menarik	42
		Ukuran rangka	Produk rangka sepeda kayu tipe <i>mountain bike</i> memiliki ukuran sedang	74
		sepeda kayu	Produk rangka sepeda kayu tipe <i>mountain bike</i> memiliki ukuran besar	26
2	Durabilitas	Ketahanan produk	Produk rangka sepeda kayu tipe <i>mountain bike</i> menggunakan material yang kuat	72
		rangka sepeda	Produk rangka sepeda kayu tipe <i>mountain bike</i> dibuat dengan bahan yang tahan lama	28
3	Estetika	Desain	Minimalis	31
		rangka	Klasik	30
		sepeda	Artistik	28
			Futuristik	11

Hasil kuesioner terbuka dapat mengetahui apa saja yang dibutuhkan oleh pelanggan terkait produk rangka sepeda kayu tipe *mountain bike*. Setelah menginterpretasikan kebutuhan pelanggan yang berisikan dimensi, kebutuhan pelanggan yang masih

berbentuk bahasa primer, terjemahan bahasa sekunder atau teknis, metrik, dan satuan. Berikut merupakan Tabel 3 Identifikasi Hasil Interpretasi Kebutuhan dan Bobot Kepentingan Pelanggan.

P-ISSN: 2355-2085

E-ISSN: 2550-083X

Tabel 3 Hasil Interpretasi Kebutuhan dan Bobot Kepentingan Pelanggan

No.	Dimensi Kualitas	Karakteristik Produk	Kebutuhan Pelanggan (Bahasa Primer)	Kebutuhan Pelanggan (Bahasa Sekunder)	Bobot Kepentingan
1	Konformansi	Bobot rangka	Rangka sepeda kayu tipe	1. Rangka sepeda kayu komponen <i>frame</i> memiliki berat yang ringan	5 (sangat penting)
		sepeda kayu	mountain bike memiliki bobot yang ringan	2. Rangka sepeda kayu komponen 2 (<i>seat tube</i>) memiliki berat yang ringan	5 (sangat penting)
				3. Rangka sepeda kayu komponen 3 (<i>bottom bracket</i>) memiliki berat yang ringan	5 (sangat penting)
				4. Rangka sepeda kayu komponen 4 (<i>head tube</i>) memiliki berat yang ringan	5 (sangat penting)
		Ukuran rangka sepeda kayu	Rangka sepeda kayu tipe mountain bike memiliki ukuran	5. Rangka sepeda kayu komponen 1 (<i>frame</i>) memiliki ukuran yang sesuai dengan standar antropometri	5 (sangat penting)
	yang sedang dan nyaman saat digunakan		6. Rangka sepeda komponen 2 (seat tube) kayu memiliki ukuran yang sesuai dengan standar	5 (sangat penting)	

JISI: JURNAL INTEGRASI SISTEM INDUSTRI

				antropometri	
				7. Rangka sepeda kayu komponen 2 (<i>seat tube</i>) memiliki ukuran sudut yang sesuai dengan geomteri sepeda	5 (sangat penting)
				8. Rangka sepeda kayu komponen 4 (<i>head tube</i>) memiliki ukuran sudut yang sesuai dengan geomteri sepeda	5 (sangat penting)
2	Durabilitas	s Kekuatan rangka sepeda kayu	Rangka sepeda kayu tipe mountain bike	9. Rangka sepeda kayu komponen 1 (<i>frame</i>) dengan menggunakan material yang kuat	5 (sangat penting)
	sepeda kayu	menggunakan material yang kuat	10. Rangka sepeda kayu komponen 3 (<i>bottom bracket</i>) dengan menggunakan material yang kuat	5 (sangat penting)	
3	Estetika	Desain rangka	Desain rangka sepeda kayu	11. Rangka sepeda kayu memiliki jumlah sisi rangka yang sedikit	5 (sangat penting)
	sepeda	yang minimalis	12. Rangka sepeda kayu memiliki bentuk komponen yang sederhana	5 (sangat penting)	

atau r hitung lebih besar dibandingkan dengan nilai r tabel. N atau jumlah data yaitu sebanyak 100. Nilai r hitung yang didapatkan dengan banyak data 100 yaitu sebesar 0,195. Gambar 4 merupakan hasil uji validitas dengan SPSS.

P-ISSN: 2355-2085

E-ISSN: 2550-083X

4.3 Uji Validitas dan Reliabilitas

Hasil pengolahan *software* SPSS 22.0 pada uji validitas yaitu *output Correlations*. *Output Correlations* berisikan informasi mengenai kesimpulan data valid atau tidak. Pernyataan dikatakan valid jika nilai *Pearson Correlation*

socceanie

		Permyataan_1	Pennyataan_2	Permyataan_3	Pernyataan_4	Pemyataan_5	Pernyataan_6	Pemyataan_7	Permyataan_8	Pernyataan_8	Pernyataan_1 0	Pernyataan_1	Pernyautan_1 2	Jumlah
Pernyataan_1	Pearson Correlation	1.	419	.268	480	:346	.389	363	.386	.270	.239	,469	,407	620
	Sig. (2-tailed)	1000	000	207	000	.000	000	.000	000	007	017	000	000	.00
	N	100	100	100	100	100	100	100	100	100	100	100	100	1.0
Pernyataan_2	Pearson Correlation	418	1	634	478	293	240	362	284"	355"	375"	450"	143	636
	Big. (2 tailed)	.000		.000	.000	.003	016	,000	.004	.000	000	.000	.155	.00
	N	100	100	100	100	100	100	100	100	100	100	100	100	10
Pernyataan_3	Pearson Correlation	.260	634	1	540"	.330	.256	334	.205	,203	.342	,424	.294	.620
	Sig. (2-tailed)	007	000		000	.001	610	.001	004	664	.001	.000	003	.00
	N	100	100	100	100	100	100	100	100	100	100	100	100	1.0
Perrystaan_4	Pearson Correlation	.460	478	540	1	392"	345	555	.565	398	385	.587"	330	745
	Big (2 tailed)	.000	.000	.000	2000	,000	000	.000	.000	.004	.000	000	.001	.00
	N	100	100	100	100	100	100	100	100	100	100	100	100	100
Permataan_6	Pearson Correlation	.346	293	.330	392"	1	.635	470	.462	369	332"	.205	.725	672
	Sig. (2-tailed)	.000	600	.001	666		600	.000	.000	666	661	.004	.000	.000
	N	100	100	100	100	100	100	100	500	100	100	100	100	10
Ferrystaan_6	Pearson Correlation	.369	.240	256	345	.635	1	429	,996	471	359	,289"	J01"	.696
	Big. (2 tailed)	.000	.016	.010	000	.000		.000	000	.000	000	.004	.000	.00
	N	100	100	100	100	100	100	100	100	100	100	100	100	100
Pernyataan_7	Pearson Correction	.392	362	.334	.555	470	.529	10	.769	.449	500	356	.642	752
	Sig. (2-tailed)	000	000	.001	.000	.000	000	1000	000	.000	dee	000	.000	.000
	N	100	100	100	100	100	100	100	100	100	100	100	100	100
@errystaan_6	Pearson Correlation	.386	284	.285	.555	.462	.596	769	. 1	010	444	,420	.514	767
	Big. (2-tailed)	000	.004	.004	000	.000	000	000		.000	000	000	.000	.000
	N	100	100	100	100	100	100	100	100	100	100	100	100	100
Pernyataan_9	Pearson Compilition	.270	365	.203	299	368	471	449	.516	- 1	757"	235	308	859
	flig (2-tailed)	.007	,000	.004	.004	.000	000	.000	.000		.000	019	.002	.000
	N	100	100	100	100	100	100	100	100	100	100	100	100	100
Fernystaan_10	Pearson Correlation	239	376	.342	385	.332	.369	508	,444	.757	- 0	,300	270	859
	Sig. (2-tailed)	017	.000	001	000	.001	000	000	.000	.000	100,000	002	017	.00
	N.	100	100	100	100	199	100	100	105	100	100	100	100	100
Pernyutuan_11	Pearson Compission	.469**	460	424	587"	285"	.289"	356	.420	233	300	1	.300"	653
	Rig. (2-tailed)	.000	.000	.000	.000	.094	004	.000	.000	.019	.002		,002	.00
	N .	100	100	100	100	100	100	100	100	100	100	1.00	100	100
Perryastan_12	Pearson Consistion	.407"	.143	.294	.330	.726	,701	442	.514	.309	.298	,300	1	.640
	Sig. (2-tailed)	000	166	503	.001	000	000	000	000	.002	017	002	710	000
	N	100	100	100	100	100	1.00	100	100	100	100	100	100	10
Juntah	Pearson Correction	620**	636"	620	741"	672"	505	762	767	659	659"	553	640	100
	Big (2-tailed)	.000	.000	.000	.000	.000	000	.000	.000	.000	ucc	.000	.000	
	ħ.	100	100	100	100	100	100	100	100	100	100	100	100	100

[&]quot;. Correlation is significant at the 0.01 level (2-tailed)

Gambar 4 Hasil Uji Validitas

Berdasarkan hasil uji validitas diketahui nilai korelasi > 0,195, sehingga dinyatakan semuanya pernyataan valid. Uji reliabilitas dilakukan dengan bantuan *software* SPSS 22.0. *Output* yang dihasilkan berupa *reliability statistics* yang akan menunjukkan apakah kesimpulan data tersebut reliabel atau tidak. Uji reliabilitas menggunakan *Cronbach's Alpha*. Berikut merupakan Gambar 5 Hasil Uji Reliabilitas.

	Reliability Statistics							
	Cronbach's Alpha	N of Items						
	.763	13						
l '								

Gambar 5 Hasil Uji Reliabilitas

Berdasarkan Gambar 7 output uji reliabilitas kuesioner bobot kepentingan pelanggan didapatkan bahwa nilai Cronbach's Alpha sebesar 0,763 yang akan dibandingkan dengan 0,6. Hasil uji menyatakan bahwa data tersebut reliabel karena nilai Cronbach's Alpha yang didapatkan lebih dari 0,6. Sehingga seluruh data kuesioner bobot kepentingan pelanggan produk rangka sepeda kayu tipe mountain bike dinyatakan reliabel.

4.4 Karakteristik Teknis

Karakteristik teknis merupakan deskripsi yang terukur mengenai suatu produk. Dengan menggunakan Quality Function Deployment (QFD) diharapkan produk dapat memenuhi kriteria dan harapan pelanggan agar dapat meningkatkan kepuasan pelanggan. Hasil dari identifikasi kebutuhan pelanggan akan diintepretasikan menjadi karakteristik teknis yang merupakan dasar penentuan spesifikasi target rancangan. Berikut merupakan Tabel 5 Identifikasi Kebutuhan Pelanggan.

^{*,} Correlation is significant at the 3.05 level (2-failed)

Tabal	5	Idontifil	7001	Kebutuhan	Dalanggan
1 abei	2	паенини	Casi	Nebutunan	relanggan

		-	Kebutuhan	asi Kebutuhan Pelanggan		
No.	Dimensi Kualitas	Karakteristik Produk	Pelanggan (Bahasa Primer)	Kebutuhan Pelanggan (Bahasa Sekunder)	Metrik	Satuan
1	Konformansi	Bobot rangka sepeda kayu	Produk rangka sepeda kayu tipe <i>mountain bike</i> memiliki	1. Rangka sepeda kayu komponen 1 (<i>frame</i>) memiliki berat yang ringan	Ketebalan kayu komponen 1 dan panjang komponen 1	mm
			bobot yang ringan	2. Rangka sepeda kayu komponen 2 (<i>seat tube</i>) memiliki berat yang ringan	Panjang kayu komponen 2 dan diameter kayu komponen 2	mm
				3. Rangka sepeda kayu komponen 3 (<i>bottom</i> <i>bracket</i>) memiliki berat yang ringan	Panjang kayu komponen 3	mm
				4. Rangka sepeda kayu komponen 4 (<i>head tube</i>) memiliki berat yang ringan	Panjang dan diameter komponen 4	mm
2		Ukuran rangka sepeda kayu	Produk rangka sepeda kayu tipe mountain bike memiliki	5. Rangka sepeda kayu komponen 1 memiliki ukuran yang sesuai dengan standar antropometri	Panjang rangka sepeda komponen 1	mm
			ukuran sedang dan nyaman saat digunakan	6. Rangka sepeda kayu komponen 2 memiliki ukuran yang sesuai dengan standar antropometri	Panjang rangka sepeda komponen 2	mm
				7. Rangka sepeda kayu komponen 2 memiliki ukuran sudut yang sesuai dengan geomteri sepeda	Kemiringan rangka sepeda komponen 2	Derajat(°)
				8. Rangka sepeda kayu komponen 4 memiliki ukuran sudut yang sesuai dengan geomteri sepeda	Kemiringan rangka sepeda komponen 4	Derajat(°)
3	Durabilitas	Ketahanan rangka sepeda	Rangka sepeda kayu tipe mountain bike	9. Rangka sepeda kayu komponen 1 dengan menggunakan material yang kuat	Ketebalan kayu komponen 1	mm
			menggunakan material yang kuat	10. Rangka sepeda kayu komponen 3 dengan menggunakan material yang kuat	Panjang kayu komponen 3	mm
4	Estetika	Desain	Desain	11. Rangka sepeda	Jumlah sisi	Unit

P-ISSN: 2355-2085 Website: http://jurnal.umj.ac.id/index.php/jisi E-ISSN: 2550-083X

rangka	rangka	kayu memiliki jumlah	rangka pada
sepeda	sepeda kayu	sisi rangka yang sedikit	komponen 1
	yang minimalis	12. Rangka sepeda kayu memiliki bentuk komponen yang sederhana	Bentuk - komponen

4.5 Spesifikasi Produk Pembanding

Setelah memperoleh data produk pembanding, selanjutnya adalah melakukan tahap proses benchmarking produk pembanding dengan produk referensi. Proses benchmarking dilakukan untuk

mengidetifikasi kelebihan pada produk pembanding dan tidak terdapat pada produk referensi. Data benchmarking produk pembanding dengan produk referensi dapat dilihat pada Tabel 6.

Tabel 6 Spesifikasi Produk Pembanding

			PE	EMBANDII	PRODUK		
No.	Metrik	Karakteristik Teknis	PACIFIC MTB 26"	United Stavros 26"	Polygon Monarch M5 Mountain Bike 26"	REFERENSI (Rangka Sepeda Kayu)	Satuan
1	Ketebalan	Komponen 1 (Frame)	40	35	30	30	mm
2	Panjang		1000	1010	1010	1000	mm
3	Panjang	Komponen 2 (Seat Tube)	400	410	410	380	mm
4	Diameter	•	31	31	32	31	Mm
5	Kemiringan		80	75	80	70,5	derajat
7	Panjang	Komponen 3 (Bottom Bracket)	122	122	118	110	mm
8	Panjang	Komponen 4 (Head Tube)	100	100	100	100	mm
9	Diameter		28,6	31,75	28,6	28,6	mm
10	Kemiringan		80	78	78	68	derajat
11	Jumlah s	isi rangka				4	unit
	Bentuk komponen		MTB Medium	MTB Medium	MTB Medium	MTB pulau bali	-

4.6 Anthropometri

Pendekatan antropometri dilakukan untuk mengetahui ukuran yang sesuai dengan dimensi tubuh manusia, sehingga produk dapat digunakan dengan ideal. Perhitungan antropometri produk rangka sepeda kayu menggunakan dimensi panjang rentang tangan kedepan dengan nilai sebesar 75,01 cm. Produk rangka sepeda kayu menggunakan dimensi panjang rentang tangan. Alasan digunakan dimensi tubuh tersebut adalah untuk mengetahui jarak saddle ke stang agar produk memiliki ukuran yang sesuai dengan dimensi tubuh manusia sehingga nyaman saat digunakan. Berikut merupakan gambar dimensi tubuh manusia yang digunakan dalam penelitian ini.

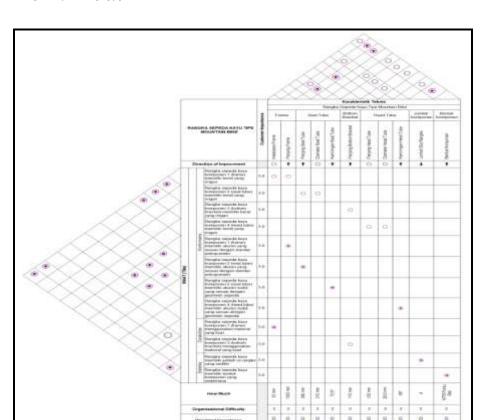
Perhitungan antropometri produk rangka sepeda kayu menggunakan persentil 50 (P₅₀) untuk perhitungan jarak saddle ke stang dan allowance sebesar 5% (Veni & Makrumi, 2022). Persentil 50 (P_{50}) dipilih agar pelanggan dengan ukuran panjang rentang tangan rata-rata merasa nyaman saat menggunakan produk rangka sepeda kayu tersebut, sedangkan *allowance* 5% digunakan karena persentase kesalahan yang diizinkan pada bidang industri sebesar 5%. Berikut ini merupakan perhitungan antropometri dalam menentukan ukuran produk rangka sepeda kayu dengan menggunakan persentil 50 (P_{50}) dan *allowance* sebesar 5%.

Jarak *saddle* ke stang sepeda

= Panjang rentang tangan (P_{50}) + *Allowance*

= $75,01 + (0,05 \times 75,01)$ = $78,76 \approx 79$ cm

4.7 Spefisikasi Target


Spesifikasi target merupakan tujuan dari tim pengembang, yang sangat berperan dalam menjalankan produk supaya sukses di pasaran. Spesifikasi target diperoleh berdasarkan arah perbaikan produk referensi yang diperoleh dari identifikasi kebutuhan pelanggan. Tabel 7 merupakan Spesifikasi Target Rangka Sepeda.

	Tabel 7 Spesifikasi Target Rangka Sepeda							
No	Metrik	Karakteristik	Nilai	Nilai	Satuan			
NO	Menik	Teknis	Marginal	Ideal	Satuali			
1	Ketebalan	Komponen	30-40	30	mm			
2	Panjang	frame	1000-1010	1010	mm			
3	Panjang	Komponen	380-410	410	mm			
4	Diameter	seat tube	31	31	mm			
5	Kemiringan	-	70,5-80	80	derajat			
6	Panjang	Komponen	110-122	122	mm _			
		bottom						
		bracket						
7	Panjang	Komponen	100	100	mm			
8	Diameter	head tube	28,6	28,6	mm			
9	Kemiringan	-	68-80	80	derajat _			
10	Jumlah l	komponen	≤4	≤4	unit			
11	Bentuk I	Komponen	MTB	MTB	-			
			Minimalis	Minimalis				

4.8 Matriks HOQ 1

Kegiatan selanjutnya adalah melakukan penyusunan matriks *House of Quality* (HOQ)

dengan menggunakan software QFD Designer 5.0. Berikut merupakan Gambar 6 Matriks House of Quality Produk Rangka Sepeda Tipe Mountain Bike.

Gambar 6 Matriks House of Quality Produk Rangka Sepeda Kayu Tipe Mountain Bike

Berdasarkan gambar 6 dapat diketahui bahwa nilia-nilai yang terdapat pada weighted importance didapat dengan menjumlahkan hasil kali antara kepentingan pelanggan dengan nilai hubungan yang terdapat pada karakteristik teknis dengan kebutuhan pelanggan dan nilai relative importance yang didapat dari nilai weighted importance dibagi dengan total keseluruhan nilai weighted importance dikali dengan 100. Weighted importance pada ketebalan frame, panjang frame, dan panjang seat tube sebesar 60.0 dengan relative importance sebesar 13,79%. Weighted importance pada diameter seat tube, panjang head tube dan diameter head tube sebesar 15.0 dengan relative importance sebesar 3,44%. Weighted importance pada kemiringan seat tube, keimiringan head tube, jumlah sisi rangka dan bentuk komponen sebesar 45.0 dengan relative importance sebesar 10,34%. Weighted importance pada panjang bottom bracket sebesar 30.0 dengan relative importance sebesar 6,89%.

Berdasarkan tabel 7 diperoleh beberapa hasil yang menunjukkan tidak perlu adanya perbaikan, perlu penambahan ukuran pada

metrik dan terdapat hasil yang menunjukkan perlu adanya penurunan nilai atau komponen. Metrik ketebalan *frame* yang diharapkan pelanggan yaitu nilainya sama dengan produk sebelumnya sehingga untuk ketebalan didapatkan sebesar 30 mm. Metrik panjang frame yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga ukuran panjang yang diperoleh sebesar 1010 mm. Metrik panjang seat tube yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga ukuran panjang vang diperoleh sebesar 410 mm. Metrik diameter seat tube yang diharapkan pelanggan nilainya sama dengan sebelumnya sehingga untuk diameter yang didapatkan sebesar 31 mm. Metrik kemiringan seat tube yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga ukuran kemiringan yang diperoleh sebesar 80°. Metrik panjang bottom bracket yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga ukuran panjang yang diperoleh sebesar 122 mm. Metrik panjang head tube *tube* yang diharapkan pelanggan yaitu nilainya sama dengan produk sebelumnya sehingga untuk panjang yang didapatkan sebesar 100

P-ISSN: 2355-2085

E-ISSN: 2550-083X

mm. Metrik diameter *head tube tube* yang diharapkan pelanggan yaitu nilainya sama dengan produk sebelumnya sehingga untuk diameter yang didapatkan sebesar 28,6 mm. Metrik kemiringan *head tube* yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga ukuran kemiringan yang diperoleh sebesar 80°. Metrik jumlah komponen rangka sepeda yang diharapkan pelanggan yaitu lebih kecil lebih baik sehingga jumlah komponen yang diperoleh sebanyak ≤ 4 unit. Metrik bentuk komponen yang diharapkan pelanggan yaitu lebih besar lebih baik sehingga bentuk komponen yang diperoleh yaitu bentuk MTB minimalis.

Pada produk referensi dan produk ideal menggunakan bahan penyusun yang sama yaitu kayu jati (Adi, dkk, 2016). Pengukuran antropometri digunakan untuk mengetahui jarak antara *saddle* ke stang sepeda (Veni & Makrumi, 2022). Adapun ukuran antropometri yang diperoleh adalah 78,76 cm, diperoleh dari data antropometri yang diperoleh dari Antropometri Indonesia dan kemudian dijumlahkan dengan *allowance* sebesar 5%.

Penelitian ini masih membahas mengenai identifikasi kebutuhan pelanggan spesifikasi rangka sepeda kayu vang menggunakan diharapkan acuan ukuran perbandingan antar kompetitor, diperlukan simulasi lebih lanjut menggunakan aplikasi design untuk memastikan ukuran yang menjadi target ideal rangka sepeda gunung.

5. Kesimpulan

Identifikasi kebutuhan pelanggan mendapatkan hasil kebutuhan pelanggan terhadap produk rangka sepeda kayu tipe mountain bike antara lain rangka sepeda kayu memiliki berat yang ringan pada komponen 1 (frame), komponen 2 (seat tube), komponen 3 (bottom bracket), komponen 4 (head tube). Rangka sepeda kayu komponen 1 (frame) memiliki ukuran yang sesuai dengan standar antropometri dan komponen 2 (seat tube), rangka sepeda kayu komponen 2 (seat tube) dan komponen 4 (head tube) memiliki ukuran sudut yang sesuai dengan geometri sepeda, rangka sepeda kayu komponen 1 (frame) dan komponen 3 (bottom bracket) menggunakan material yang kuat, rangka sepeda kayu memiliki jumlah sisi rangka rangka yang sedikit dan memiliki bentuk komponen yang sederhana. Spesifikasi rangka sepeda gunung

yang ideal pada komponen *frame* memiliki ketebalan 30 mm dan Panjang 1010 mm, komponen *seat tube* memiliki Panjang 410 mm, diameter 31 mm, dan kemiringan 80° , komponenn *bottom bracket* memiliki Panjang 122 mm, komponen *head tube* memiliki Panjang 100 mm, diameter 28,6 mm dan kemiringan 80° , jumlah sisi rangka ≤ 4 unit, serta bentuk komponen MTB minimalis.

UCAPAN TERIMA KASIH

Terima kasih kami ucapkan kepada para pihak yang telah membantu keberlangsungan penelitian ini yaitu kepada BRIN dan UG. Serta semua pihak yang tidak bisa kami sebutkan satu per satu, atas bantuannya kami ucapkan terima kasih.

DAFTAR PUSTAKA

- Adi, D. S., Sudarmanto, S., Ismadi, I., Gopar, M., Darmawan, T., Amin, Y., Dwianto, W., & Witjaksono, W. 2016. Evaluation Of The Wood Quality Of Platinum Teak Wood. Teknologi Indonesia, 39(1), 36-44.
- Cohen, Lou. 1995. Quality Function Deployment. How to make QFD Work for You. USA: Addison-Wesley Publishing Company.
- Goetsch, D. L. dan Davis B. S. 1997. "Introduction to Total Quality". Quality Management for Production, Processing, and Services. Second edition
- Hasan, M. Iqbal. 2002. Pokok-pokok Materi Statistik 1 (Statistik Deskriptif). Edisi Kedua, Penerbit PT. Bumi Aksara, Jakarta.
- Irawan, Agustinus Purna. 2017. Perencanaan Dan Pengembangan Produk Manufaktur. Yogyakarta: CV Andi Offset.
- Iridiastadi, H. dan Yassierli. 2014. Ergonomi Suatu *Pengantar*, Bandung: PT Remaja Rosdakarya.
- Ismayati, M., Pramasari, D. A., Dwianto, W., Adi, D. S., Muliawati, N. T., Damayanti, R., Pramesti, N. A. P., Ramadhan, S., Hardianto, A., & Kamaluddin, N. N. 2023. A Study of Chemical Constituents in Platinum FastGrown Teak Wood (Tectona grandis) with Age Differences Using Py-GCMS Coupled with

Interdependence Multivariate Analysis.

P-ISSN: 2355-2085

E-ISSN: 2550-083X

- HAYATI Journal of Biosciences, 30(2), 380-391.
 Pawitra, T, 1994, Patok Duga (*Benchmarking*):
- Kiat Belajar Dari Yang Terbaik, Manajemen Usahawan Indonesia, No. 1, Vol. 23.
- Rahman, T. 2013. *Benchmarking*. Jakarta: Universitas Esa Unggul.
- Sultan, A. Z. 2019. Pengembangan Desain Sepeda Untuk Mahasiswa Dan Pelajar Dengan Metoda Quality Function Deployment (QFD). Jurusan Teknik Mesin. Politeknik Negeri Ujung Padang. (Pengembangan Desain Sepeda Untuk Mahasiswa Dan Pelajar Dengan Metoda Quality Function Deployment (QFD) Sultan Jurnal Teknik Mesin Sinergi).
- Tjiptono, F. 2001. *Manajemen Jasa*. Yogyakarta: Penerbit Andi Santiyasa, I Wayana. Rancangan Aktivitas Tutorial (RAT).
- Ulrich, Karl T., dan Eppinger, S. D. 2001.

 Perancangan Dan Pengembangan Produk. Edisi Pertama Salemba Teknika, Jakarta
- Veni & Makrumi, Kumroni, 2022. Mendesain Ulang Rangka Sepeda yang Ergonomis Dengan Quality Function Deployment (OFD). Tesis., Universitas Bina Darma.
- Watson, G.H. 1996. Strategic Benchmarking: How to Rate Your Company's Performance Against The World's Best. Jakarta: Gramedia Pustaka Utama.
- Wignjosoebroto, S. 2008. Ergonomi Studi Gerak dan Waktu. Surabaya, Guna Widya.