
Volume 16 No. 2
July 2024

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

Website : jurnal.umj.ac.id/index.php/jurtek
 Email : jurnalteknologi@umj.ac.id

DOI: https://dx.doi.org/10.24853/jurtek.16.2.283-290

U N I V E R S I T A S M U H A M M A D I Y A H J A K A R T A

Design Of A Job Scheduling Data Structure For Grid Resources

Ardi Pujiyanta
1,*

, Fiftin Noviyanto
2

1,2
Informatics Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Yogyakarta, Jl. Ahmad

Yani Tamanan Banguntapan Bantul Yogyakarta, 55166, Indonesia

*Corresponding author email: ardipujiyanta@tif.uad.ac.id

Jurnal Teknologi use only:

Received 19 May 2022; Revised 9 September 2023; Accepted 30 July 2024

ABSTRACT

Essentially, Grid computing is an infrastructure that offers high-speed computing capacity in a distributed

system by utilizing geographically distributed resources. Grid resources are owned by different organizations

and have their own policies and access models. Scheduling future jobs in a grid system requires a data structure

capable of handling parallel jobs, known as the Message Passing Interface (MPI). A data structure model needs

to be proposed to minimize search time, and efficiently add and remove MPI jobs. Data structures that support

future scheduling models will improve resource utilization efficiency. This research proposes a data structure

capable of handling future MPI job scheduling to increase resource utilization. Experimental results on the data

structure show that the average memory consumption of the FCFS-LRH data structure is lower than that of

FCFS and FCFS-EDS. For average empty timeslot searches, FCFS-LRH is faster than FCFS-EDS but slower

than FCFS. The average data insertion speed of FCFS-LRH is faster than that of FCFS-EDS.

Keywords: MPI jobs, grid resources, data structures.

Introduction

Basically the Grid is an infrastructure that

offers high speed computing capacity on a

distributed system by utilizing geographically

distributed resources. Grid resources are

owned by different organizations and have

their own policies and access models [1]. Grid

computing has many names such as meta

computing, scalable computing, global

computing, internet computing and recently

referred to as utility computing [2]. Efficient

scheduling algorithms can make good use of

the processing capacity of the grid system,

thereby improving application performance

[3].

First Come First Serve Ejecting Based

Dynamic Scheduling (FCFS-EDS) reservation

strategy is used to improve resource utilization

in a grid system by using a local scheduler [4],

[5]. The percentage of utilization performance

is calculated in a sliding window with a size of

12 timeslots. The experimental results

compared with the traditional strategy (flexible

advance reservation strategy without planning)

resulted in better utilization performance. The

FCFS-LRH method utilizes user-submitted

parameters to improve resource utilization and

reduce job waiting times and can handle future

scheduling of MPI jobs, to maximize resource

utilization [6], [7].

mailto:ardipujiyanta@tif.uad.ac.id

Jurnal Teknologi Volume 16 No. 2 July 2024 ISSN : 2085 – 1669
Website : jurnal.umj.ac.id/index.php/jurtek e-ISSN : 2460 – 0288

284

User reservation requests in future scheduling

need to be stored in the data structure. The data

structure is used to store summary reservation

request information and is the basis for direct

input control in the resource reservation

process. The data structure must be able to

provide fast access and handle information

efficiently. About 60 percent of the total

processing time is needed for data structure

management, 8 percent is used for selecting

appropriate resources, and the remaining 32

percent is for resource management [8]. If

application requests are provided for all

potential reservation services in advance, then

more time is required. For example, during the

scanning and resource detection interval, the

data structure processing time reaches 90% of

the total time [9].

Scheduling future jobs in a grid system

requires a data structure that can handle

parallel jobs or is called a Message Passing

Interface (MPI). A data structure model needs

to be proposed to minimize search time, add

and delete MPI jobs. Data structures that

support future scheduling models will increase

the efficiency of resource use. Advance

Reservation (AR) in grid computing is an

important research area because it allows users

to gain concurrent access to resources and

allows applications to execute in parallel. It

also provides a guarantee of resource

availability at a specified time in the future.

Efficient data structures are important in

minimizing the time complexity required to

perform AR operations [10], [11].

In managing advance reservations (advance

receipt control) in a grid system, an efficient

data structure plays an important role in order

to minimize the time for searching for

available computing nodes, adding and

deleting reservations. A user who requests a

reservation in advance will get a fast response

time, in order to provide results whether the

reservation request is accepted or not.

The aim of this research is to test the memory

consumption of the proposed FCFS-LRH data

structure compared to the memory

consumption of the FCFS and FCFS-EDS

methods.

Methods

There are several data structures for managing

reservations in advance which can generally be

categorized into two types, namely timeslot

data structures and continuous data structures.

Meanwhile, the timeslot data structure is

divided into two, namely static and dynamic.

Static timeslots are divided into a fixed time

period, while dynamic timeslots, the duration

and number of timeslots are allowed to vary

according to the number of reservation

requests. The majority of timeslot-based

reservation approaches proposed in the

literature follow static solutions [12]. A data

structure that stores and places each request at

a fixed time interval is called a timeslot. In a

continuous data structure each request is

defined as its own time scale i.e. each advance

reservation can start and finish at a flexible

time. Examples of continuous data structures

are link lists and examples of timeslot data

structures are segment trees and calendar

queues. The timeslot data structure approach

has the advantage of limiting the amount of

data stored so that memory consumption can

be limited, and is easy to implement [8], [13].

Several studies whose approach is based on

static timeslots are used to find optimal

bandwidth solutions in media production [14]–

[16] The majority of current implementations

in the field of advance reservations are

supported by the timeslot data structure [17]–

[21].

Proposed FCFS-LRH Data Structure

The data structures reported in the literature

cannot be used for FCFS-LRH scheduling

strategies, to manage advance planning. The

proposed data structure for managing advance

reservations using the FCFS-LRH scheduling

strategy is influenced by the GarQ data

structure because it has better performance

among the data structures reported in the

literature. GarQ [20] is modified so that it can

handle flexible left-shift and right-shift

planning, whereas GarQ can only handle rigid

reservations. The properties added are tesr, tlsr

and removing tc in the data structure.

Proposed MPI Job Data Structure

The proposed data structure for MPI work can

be seen in Figure 1, which is depicted as an

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources

Jurnal Teknologi 16 (2) pp 283-290 © 2024

285

array-based data structure. The array name is

pSlot, the array index represents a specific

timeslot. Each timeslot contains a list of

reservations starting at that timeslot. The nodes

or elements of the pSlot array are records that

contain two fields (variables), namely the sv

field which stores the number of virtual

computing nodes available in the timeslot and

the pj field is a link list pointer to other

connected nodes. This node contains

information about a job:

UserId: User identification

jobId : User can submit more than one

independent job, 𝑗obid is used to identify.

tesr : Earliest start time to start work

tlsr : Latest start time to start the job

texe : Job execution time

jumCN : Number of resources required

node : Pointer to the reservation.

An example is given to make it easier to

explain how the MPI data structure works, if

the grid system has computing nodes in the

physical view of maxC=5 (C0-C4), then the

number of virtual nodes in the logical view is 5

(V0-V4) as well. Table 1 shows the job arrival

order with jumC≤maxC and jumJob is the

number of jobs sent by userId. Consider the

given parameters userId4 in Table 1. The

information given is as follows, user 4 has

reserved 4 timeslots in the pSlot array, with a

timeslot index between 6 to 9, and the given

job cannot be postponed or shifted because

texe =4 and tesr = tlsr =6.

Suppose userID9 sends a job 3 timeslots from

8 to 13, requires 2 compute nodes for one

independent job and can be delayed until

timeslot 13 (tesr=8, tlsr=13, texe=3, jumJob=1,

jumCN=2), shown in Figure 2. Figure 3

shows the mapping results on actual nodes for

MPI jobs.

The data structure resulting from storing all

reservation requests in Table 1 can be seen in

Figure 4. As shown in Figure 4 there is one

job that starts in timeslot 4 with the remaining

timeslot sv=4, two jobs that start in timeslot 5

with the remaining timeslot sv= 2, one job

starting in timeslot 6 with remaining timeslot

sv=0, one job starting in timeslot 7 with

remaining timeslot sv=0, one job starting in

timeslot 8 with remaining timeslot sv=0, no

jobs starting from timeslot 9 with remaining

timeslot sv=1, three jobs start in timeslot 10

with remaining timeslot sv=1. Reservation

node next=nil if it does not point to a

reservation node. In the pSlot array, the pointer

pj = nil if it does not point to a reservation

node.

Figure 1. Proposed MPI Job Data Structure.

Table 1. MPI Job Reservation Request

Parameters

Figure 2. MPI Data Structure for Storing

Reservations from Table 1.

UserId tesr tlsr te JumCN JumJob

1 4 4 2 1 1

2 5 5 2 1 1

3 5 5 3 1 1

4 6 6 4 3 1

5 7 7 1 1 1

6 8 8 2 2 1

7 8 10 4 1 1

8 9 10 3 2 1

Jurnal Teknologi Volume 16 No. 2 July 2024 ISSN : 2085 – 1669
Website : jurnal.umj.ac.id/index.php/jurtek e-ISSN : 2460 – 0288

286

Figure 3. Placement of userID9 in the logical

view using the FCFS-LRH method.

Figure 4. Mapping results on actual nodes for

MPI jobs.

Data structure components in timeslots

SlotNo :0 [] Sv: 5

SlotNo :1 [] Sv: 5

SlotNo :2 [] Sv: 5

SlotNo :3 [] Sv: 5

SlotNo :4 [1 1 4 4 2 1] Sv: 4

SlotNo :5 [1 2 5 5 2 1, 1 3 5 5 3 1] Sv: 2

SlotNo :6 [1 4 6 6 4 3] Sv: 0

SlotNo :7 [1 5 7 7 1 1] Sv: 0

SlotNo :8 [1 6 8 8 2 2] Sv: 0

SlotNo :9 [] Sv: 0

SlotNo :10 [1 7 8 10 4 1, 1 8 9 10 3 2, 1 9 8 13

3 2] Sv: 0

SlotNo :11 [] Sv: 0

SlotNo :12 [] Sv: 0

SlotNo :13 [] Sv: 4

SlotNo :14 [] Sv: 5

SlotNo :15 [] Sv: 5

SlotNo :16 [] Sv: 5

SlotNo :17 [] Sv: 5

SlotNo :18 [] Sv: 5

SlotNo :19 [] Sv: 5

Additions to MPI Jobs:

There are 4 possible cases for adding a new

reservation in a data structure:

1. The reservation list of tesr elements in the

pSlot array is empty, add a new reservation as

the first reservation node (insert it first). Lines

3 to 4 in Algorithm 1 are used to add

reservations.

2. The first node of the reservation list has a

userID that is greater than the incoming

userID, so add a new reservation as the first

node of the reservation list. This addition is

made in Algorithm 1, lines 7 to 10.

3. The first element of the reservation list has

the same userID as the incoming userID and

the jobID of the first node of the reservation

list is greater than the incoming jobID. Add the

new reservation as the first component of the

reservation list. Algorithm 1 in lines 11 to 16 is

used for job addition. Fix the pSlot array

shown in lines 19 to 21. Lines 24 to 31 update

the timeslots in the logical view.

4. In this case the new reservation will be

entered in the middle or last of the reservation

list, shown in Algorithm 2.

Step to shift work components starting at

timeslot.

1. If pSlot is empty, insert row 5.

2. Code lines 1 to 7 are used to check if

there is a job starting in the shiftable

timeslot.

3. If yes, check to see if any work can be

shifted

4. Shift the job, and update the free nodes

accordingly

5. Save the shift on stack line 32.

When inserting in the middle there are 3

possibilities:

• condition 1. still in the time range (line 10),

the time range for the incoming job is smaller

than the stored job tlsr, then shift the saved job

to make space for the incoming job to be

inserted.

• condition 2, the next slot is empty (line 18),

shift the job in, check whether it can be

inserted, if yes it can be inserted, add the job in

(line 29), update the pSlot on the right side

(line 30) and the left side (line 31).

• condition 3, do not shift jobs from the same

userId.

Algorithm 1

1 procedure append(timeSlot, Component

comp)

2 insert  false;

3 If (pSlot[timeSlot].listComp.isEmpty()) then

4 pSlot[timeSlot]listComp(comp);

5 else

6 for (int i=0) to (

i<pSlot[timeSlot].listComp.size()) do

7 If (comp.userID <

pSlot[timeSlot].listComp(i , userID)) then

8 pSlot[timeSlot]listComp(i, comp);

9 insert  true;

10 break;

11 else if (comp.userID ==

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources

Jurnal Teknologi 16 (2) pp 283-290 © 2024

287

pSlot[timeSlot].listComp(i , userID)) then

12 if (comp.jobID <

pSlot[timeSlot].listComp(i , jobID)) then

13 pSlot[timeSlot]listComp(i, comp);

14 insert  true;

15 break;

16 Endif

17 Endif

18 Endfor

19 If (insert == false) then

20 pSlot[timeSlot]listComp(comp);

21 Endif

22 Endif

23 //==Update cell

24 For (i=0) to (i<comp.execTime) do

25 For (j = 0) to (j<cell[timeSlot].length) do

26 For (j = 0) to (j<cell[timeSlot].length) do

27 If (cell[timeSlot+i][j].userID = = 0) then

28cell[timeSlot+i][j]Cell(comp.userID,comp

.jobID,comp.StartTime, comp.lStartTime);

29 break;

30 Endfor

31 Endfor

32 Endfor

Algorithm 2

1 Function boolean insRes(userID,

jumCNneeded)

2 integer i, j

3 Component comp, S1

4 succ  false

5 If (pSlot[time].listComp.Empty) then

6 return succ

7 else

8 For (i=0) to

(i<pSlot[time].listComp.size) do

9 comp  pSlot[time].listComp(i)

10 If (comp.tlsstartTime-time>0 AND

pSlot[comp.endTime+1].getFree>=comp.jumC

N) then

11 insertComp.getinsert add(comp);

12 insertComp.jumCNinsertComp.jumCN+

comp.jumCN;

13 If (insertComp.getjumCN >=

jumCNneeded) then

14 break

15 Endif

16 Endif

17 Endfor

18 If (!insertComp.getinsert.Empty) then

19 For(i=0) to (i<insertComp.insert.size) do

20 comp = insertComp.insert.get(i);

21 For (j=0) to (j<pSlot[time].listComp.size)

do

22 S1 = pSlot[time].listComp.get(j);

23 If (comp.userID == S1.userID AND

comp.jobID == S1.jobID) then

24 break;

25 Endif

26 Endfor

27 pSlot[time].listComp.remove(j)

28 removeCell(comp.userID, comp.jobID)

29 comp.setstartTime(time+1);

30 Append(time+1, comp);

34 Endfor

35 succ = true;

36 Endif

37 insertComp  new InsertComponent()

38 Endif

39 return succ;

40 Endfunc

Results and Discussions

Experiments have been carried out to measure

the memory consumption used by the FCFS-

LRH data structure compared to FCFS which

uses the LIST data structure and EDS which

uses the link list data structure. Testing is

carried out by:

1. Generate workload data with a total of 400

to 800 data, which refers to research [6].

2. The results of generating workload data

will be used by the FCFS-LRH, FCFS and

FCFS-EDS data structures, then the results

will be compared.

The results show that the LRH data structure is

smaller in memory consumption is shown in

Table 2 and Figure 5. The LRH data structure

does not perform well when searching for jobs

compared to rigid FCFS, because LRH has to

shift jobs so that incoming jobs can be

accepted, shown in Table 3 and Figure 6.

Table 4 and Figure 7 shows that the time

required to add work to the data structure using

the LRH method is faster than the EDS

method. Table 5 and Figure 8 show that the

time required for deleting work on data

structures using the LRH method is faster than

the EDS method.

Overall the FCFS-LRH data structure is better

than FCFS and FCFS-EDS, because the LRH

data structure can shift left and right in

scheduling. While EDS can only slide right,

Jurnal Teknologi Volume 16 No. 2 July 2024 ISSN : 2085 – 1669
Website : jurnal.umj.ac.id/index.php/jurtek e-ISSN : 2460 – 0288

288

FCFS cannot slide left and right because it is

rigid.

Table 2. Memory Consumption Used by

FCFS, EDS and LRH.

Number of jobs

Method 400 600 750 Average

FCFS 4340 9800 12600 8913.3

EDS 1690.1 1727.8 1996.6 1804.8

LRH 1613.2 1658.1 1733.8 1668.4

Figure 5. Total Memory Consumption of

FCFS, EDS and LRH Data Structures.

Table 3. Searching Data Structure Using

FCFS, EDS and LRH Based on Number of

Jobs.

Number of Jobs

400 600 750 Average

FCFS 70 56.3 37 54.4

EDS 222 175 190 195.7

LRH 215 180.2 160.4 185.2

Figure 6. Searching Data Structure Using

FCFS, EDS and LRH Based on Number of

Jobs

Table 4. Add to Data Structure Using EDS and

LRH Based on Number of Jobs.

400 600 750 Average

LRH 5.85 8.75 7.5 7.37

EDS 6.5 8.4 9.505 8.14

Figure 7. Add to Data Structure Using EDS

and LRH Methods Based on Number of Jobs

Table 5. Delete Data Structure Using EDS and

LRH Methods Based on Number of Jobs.

400 600 750 Average

LRH 15.38 29.59 19.12 21.36

EDS 16.65 38.56 19.24 24.82

Figure 8. Delete Data Structure Using EDS

and LRH Based on Number of Jobs.

Conclusions

Experimental results on data structures show

that the average memory consumption of the

FCFS-LRH data structure is smaller than

FCFS and FCFS-EDS. The average search for

empty timeslots of FCFS-LRH is faster than

FCFS-EDS and slower than FCFS. FCFS-

LRH's average data insert is faster than FCFS-

EDS.

Acknowledgment

The researcher would like to express his

gratitude to the Informatics Study Program at

Ahmad Dahlan University, which has provided

the freedom to use the laboratory for research.

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources

Jurnal Teknologi 16 (2) pp 283-290 © 2024

289

Funding

This research was carried out independently,

without financial assistance from external

parties.

Author Contributions

The first researcher has a role in designing the

proposed method, coding. The second author

had the role of results analysis.

Conflict of interest

The authors declare no conflict of interest.

There were no outside funders for this

research.

References

[1] M. Singh, “An Overview of Grid

Computing,” Proc. - 2019 Int. Conf.

Comput. Commun. Intell. Syst. ICCCIS

2019, vol. 2019-Janua, pp. 194–198,

2019, doi:

10.1109/ICCCIS48478.2019.8974490.

[2] R. Nawaz, W. Y. Zhou, M. U. Shahid,

and O. Khalid, “A qualitative

comparison of popular middleware

distributions used in grid computing

environment,” 2nd Int. Conf. Comput.

Commun. Syst. ICCCS 2017, pp. 36–40,

2017, doi:

10.1109/CCOMS.2017.8075262.

[3] L. Feng and G. Wei-Wei, “Research

and Design of Task Scheduling Method

Based on Grid Computing,” Proc. - 2nd

Int. Conf. Smart City Syst. Eng.

ICSCSE 2017, pp. 188–192, 2017, doi:

10.1109/ICSCSE.2017.54.

[4] R. Umar, A. Agarwal, and C. R. Rao,

“Advance Planning and Reservation in

a Grid System,” Commun. Comput. Inf.

Sci., vol. 293 PART 1, pp. 161–173,

2012, doi: 10.1007/978-3-642-30507-

8_15.

[5] A. Sulistio et al., “An Adaptive Scoring

Job Scheduling algorithm for grid

computing,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol.

5, no. 1, pp. 68–72, 2015, doi:

10.1177/1094342006068414.

[6] A. Pujiyanta, L. E. Nugroho, and

Widyawan, “Resource allocation model

for grid computing environment,” Int.

J. Adv. Intell. Informatics, vol. 6, no. 2,

pp. 185–196, 2020, doi:

https://doi.org/10.26555/ijain.v6i2.496.

[7] A. Shukla, S. Kumar, and H. Singh,

“An improved resource allocation

model for grid computing

environment,” Int. J. Intell. Eng. Syst.,

vol. 12, no. 1, pp. 104–113, 2019, doi:

10.22266/IJIES2019.0228.11.

[8] L. O. Burchard, “Analysis of data

structures for admission control of

advance reservation requests,” IEEE

Trans. Knowl. Data Eng., vol. 17, no.

3, pp. 413–424, 2005, doi:

10.1109/TKDE.2005.40.

[9] L.-O. Burchard and H.-U. Heiss,

“Performance Evaluation of Data

Structures for Admission Control in

Bandwidth Brokers,” Int. Symp.

Perform. Eval. Comput. Telecommun.

Syst. (SPECTS ’02), pp. 652–659, 2002,

[Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/do

wnload?doi=10.1.1.14.1535&rep=rep1

&type=pdf.

[10] B. Li, Y. Pei, H. Wu, and B. Shen,

“Resource availability-aware advance

reservation for parallel jobs with

deadlines,” J. Supercomput., vol. 68,

no. 2, pp. 798–819, 2014, doi:

10.1007/s11227-013-1067-8.

[11] A. Pujiyanta, L. E. Nugroho, and

Widyawan, “Job Scheduling Strategies

in Grid Computing,” Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 12, no. 3, pp.

1293–1300, 2022, doi:

10.18517/ijaseit.12.3.10147.

[12] N. Charbonneau and V. M. Vokkarane,

“A survey of advance reservation

routing and wavelength assignment in

wavelength-routed WDM networks,”

IEEE Commun. Surv. Tutorials, vol. 14,

no. 4, pp. 1037–1064, 2012, doi:

10.1109/SURV.2011.111411.00054.

[13] M. D. de Assuncao, “Enhanced Red-

Black-Tree Data Structure for

Facilitating the Scheduling of

Reservations,” 2015, [Online].

Available:

http://arxiv.org/abs/1504.00785.

[14] A. Gadkar, T. Entel, J. M. Plante, and

V. M. Vokkarane, “Slotted advance

reservation for multicast-incapable

optical wavelength division

multiplexing networks,” J. Opt.

Commun. Netw., vol. 6, no. 3, pp. 340–

Jurnal Teknologi Volume 16 No. 2 July 2024 ISSN : 2085 – 1669
Website : jurnal.umj.ac.id/index.php/jurtek e-ISSN : 2460 – 0288

290

354, 2014, doi:

10.1364/JOCN.6.000340.

[15] M. Barshan, H. Moens, J. Famaey, and

F. De Turck, “Deadline-aware advance

reservation scheduling algorithms for

media production networks,” Comput.

Commun., vol. 77, no. 2015, pp. 26–40,

2016, doi:

10.1016/j.comcom.2015.10.016.

[16] M. Barshan, H. Moens, B. Volckaert,

and F. De Turck, “A comparative

analysis of flexible and fixed size

timeslots for advance bandwidth

reservations in media production

networks,” 2016 7th Int. Conf. Netw.

Futur. NOF 2016, 2017, doi:

10.1109/NOF.2016.7810118.

[17] R. Brown, “Calendar Queues: A Fast

0(1) Priority Queue Implementation for

the Simulation Event Set Problem,”

Commun. ACM, vol. 31, no. 10, pp.

1220–1227, 1988, doi:

10.1145/63039.63045.

[18] R. A. Guerin and A. Orda, “Networks

with advance reservations: The routing

perspective,” Proc. - IEEE INFOCOM,

vol. 1, pp. 118–127, 2000, doi:

10.1109/infcom.2000.832180.

[19] A. Brodnik and A. Nilsson, “A Static

Data Structure for Discrete Advance

Bandwidth Reservations on the

Internet,” Swedish Natl. Comput. Netw.

Work., vol. 41, pp. 1–15, 2003.

[20] A. Sulistio, U. Cibej, S. K. Prasad, and

R. Buyya, “GarQ: An efficient

scheduling data structure for advance

reservations of grid resources,” Int. J.

Parallel, Emergent Distrib. Syst., vol.

24, no. 1, pp. 1–19, 2009, doi:

10.1080/17445760801988979.

[21] L. Wu, P. Dang, T. Yu, and L. Nie,

“Research on efficient non-slotted tree

structures for advance reservation,”

Commun. Comput. Inf. Sci., vol. 401,

pp. 50–61, 2013, doi: 10.1007/978-3-

642-53959-6_6.

