OPTIMASI TURBIN ARUS LAUT TIPE V-SHAPED BLADE DENGAN MEMPERTIMBANGKAN BLADE ASPECT RATIO DAN SOLIDITY
Abstract
The V-shaped blade turbine is one of the turbine models with good self-starting capability, although its efficiency is still standard. Various studies, especially of foil shape and blade swept angle variations applied to V-shaped blade turbines, have been carried out to improve its performance. This study aims to optimize the ability of a V-shaped blade turbine in terms of efficiency and self-starting by investigating the effect of blade aspect ratio and solidity through several test scenarios. NACA 634021 foil and a blade swept angle of 30° were used to create the main form of a V-shaped blade turbine. The simulation results using the QBlade software show that the blade aspect ratio and solidity significantly affect the efficiency and self-starting capability of the V-shaped blade turbine. Finally, the optimal design configuration was achieved on the turbine dimensions with a height of 3.1344 m, a radius of 1.8288 m, a chord foil length of 0.2134 m, and a total of four blades. This configuration can achieve maximum efficiency of 0.441 and fulfills self-starting at the minimum tip speed ratio limit of 0.7.
Keywords
Full Text:
PDFReferences
Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K., 2014. Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis. Proc. Inst. Mech. Eng. Part A J. Power Energy 228, 742–759.
Anjum, Z., Najmi, L.A., Fahad, A., Ashraf, R., Ehsan, S., Aslam, W., 2016. Common Vertical Axis Savonius-Darrieus Wind Turbines for Low Wind Speed Highway Applications. Tech. Journal 21, 85–90.
Armstrong, S., Fiedler, A., Tullis, S., 2012. Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences. Renewable Energy 41, 13–22.
Batista, N., Melicio, R., Mendes, V., 2018. Darrieus-type vertical axis rotary-wings with a new design approach grounded in double-multiple streamtube performance prediction model. AIMS Energy 6, 673–694.
Bos, R., 2012. Self-Starting of a Small Urban Darrieus Rotor Strategies to Boost Performance in Low Reynolds Number Flows. Master Thesis. Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands.
Cho, S.Y., Choi, S.K., Kim, J.G., Cho, C.H., 2018. An experimental study of the optimal design parameters of a wind power tower used to improve the performance of vertical axis wind turbines. Adv. Mech. Eng. 10, 1–10.
Dabachi, M.A., Rahmouni, A., Rusu, E., Bouksour, O., 2020. Aerodynamic simulations for floating darrieus-type wind turbines with three-stage rotors. Inventions 5 (18), 1–18.
Delafin, P.L., Nishino, T., Wang, L., Kolios, A., 2016. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine. J. Phys. Conf. Ser. 753.
Enawi, H.H., Kadhum, H.H., Al-Anbary, K.M., 2021. The Effects of Blades Number , Blade Thickness , Blade Tip Angle , and Twist Angle on the Performance of the Rotor Wind Turbines. J. Univ. Babylon Eng. Sci. 29, 1–17.
Fedak, W., Anweiler, S., Gancarski, W., Ulbrich, R., 2017. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum. E3S Web Conf. 19.
Gorban, A.N., Gorlov, A.M., Silantyev, V.M., 2001. Limits of the turbine efficiency for free fluid flow. J. Energy Resour. Technol. Trans. ASME 123, 311–317.
Handoko, R., Hadi, S., Danardono, Ubaidillah, Arifin, Z., 2021. Parameters of Savonius Type Hydrokinetic Turbine to Enhance Efficiency. IOP Conf. Ser. Mater. Sci. Eng. 1096, 012039.
Islam, M., Ting, D.S.K., Fartaj, A., 2008. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 12, 1087–1109.
Islam, M.R., Bin Bashar, L., Rafi, N.S., 2019. Design and Simulation of A Small Wind Turbine Blade with Qblade and Validation with MATLAB. 2019 4th Int. Conf. Electr. Inf. Commun. Technol. EICT 2019 3, 20–22.
Janon, A., 2020. Torque coefficient analysis of a novel direct-drive parallel-stream counter-rotating darrieus turbine system. Renew. Energy 147, 110–117.
Johari, H., Henoch, C., Custodio, D., Levshin, A., 2007. Effects of leading-edge protuberances on airfoil performance. AIAA J. 45, 2634–2642.
Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E., 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 86, 1823–1835.
Kirke, B.K., 1998. Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications. Thesis. School of Engineering, Griffith University, Nathan, QLD, Australia.
Kumar, P.M., Sivalingam, K., Narasimalu, S., Lim, T.-C., Ramakrishna, S., Wei, H., 2019. A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines. J. Power Energy Eng. 7, 27–44.
Li, Q., Maeda, T., Kamada, Y., Murata, J., Shimizu, K., Ogasawara, T., Nakai, A., Kasuya, T., 2016. Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renew. Energy 96, 928–939.
Madi., Rahmawati, S., Mukhtasor., Satrio, D., Yasim, A., 2021. Variation Number of Blades for Performance Enhancement for Vertical Axis Current Turbine in Low Water Velocity in Indonesia, in: Proceedings of the 7th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management. SCITEPRESS - Science and Technology Publications, pp. 47–53.
Madi, M., Tuswan, T., Arirohman, I.D., Ismail, A., 2021. Comparative Analysis of Taper and Taperless Blade Design for Ocean Wind Turbines in Ciheras Coastline, West Java. Kapal J. Ilmu Pengetah. dan Teknol. Kelaut. 18, 8–17.
Mahmuddin, F., 2017. Rotor Blade Performance Analysis with Blade Element Momentum Theory. Energy Procedia 105, 1123–1129.
Mahmuddin, F., Klara, S., Sitepu, H., Hariyanto, S., 2017. Airfoil Lift and Drag Extrapolation with Viterna and Montgomerie Methods. Energy Procedia 105, 811–816.
Mereu, R., Federici, D., Ferrari, G., Schito, P., Inzoli, F., 2017. Parametric numerical study of Savonius wind turbine interaction in a linear array. Renew. Energy 113, 1320–1332.
Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., Tucciarelli, T., 2020. Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renew. Energy 162, 1087–1103.
Mukhtasor., Junianto, S., Prastianto, R.W., 2018. On Offshore Engineering Rules for Designing Floating Structure of Tidal Current Energy Conversion System. Appl. Mech. Mater. 874, 71–77.
Paraschivoiu, I., Trifu, O., Saeed, F., 2009. H-Darrieus wind turbine with blade pitch control. Int. J. Rotating Mach. 2009.
Pope, K., Naterer, G.F., Dincer, I., Tsang, E., 2011. Power correlation for vertical axis wind turbines with varying geometries. Int. J. Energy Res. 35, 423–435.
Pujol, T., Massaguer, A., Massaguer, E., Montoro, L., Comamala, M., 2018. Net power coefficient of vertical and horizontal wind turbines with crossflow runners. Energies 11, 1–24.
Rawlings, G.W., 2008. Parametric Characterization of an Experimental Vertical Axis Hydro Turbine. Thesis. Faculty of Mechanical Engineering, University of British Columbia, Vancouver, Canada.
Sagharichi, A., Zamani, M., Ghasemi, A., 2018. Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 161, 753–775.
Satrio, D., Utama, I.K.A.P., Mukhtasor, 2018. Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine. J. Mar. Sci. Appl. 17, 208–215.
Su, J., Chen, Y., Han, Z., Zhou, D., Bao, Y., Zhao, Y., 2020. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Appl. Energy 260, 114326.
Tafrant, D., Hendradinata, 2019. Pengaruh Sudut Kemiringan Sudu Terhadap Kinerja Turbin Achard Yang Digabung Dengan Deflektor 30°. J. PETRA 6, 33–38.
Utama, I.K.A.P., Satrio, D., Mukhtasor, M., Atlar, M., Shi, W., Hantoro, R., Thomas, G., 2020. Numerical simulation of foil with leading-edge tubercle for vertical-axis tidal-current turbine. J. Mech. Eng. Sci. 14, 6982–6992.
Zanette, J., Imbault, D., Tourabi, A., 2010. A design methodology for cross flow water turbines. Renew. Energy 35, 997–1009.
DOI: https://doi.org/10.24853/jurtek.15.1.1-12
Refbacks
- There are currently no refbacks.