METODOLOGI PERHITUNGAN KOEFISIEN PERPINDAHAN PANAS KONVEKSI PAKSA FLUIDA ORGANIK PROPANA PADA KONDISI SUPERKRITIK
DOI:
https://doi.org/10.24853/jurtek.9.2.89-96Keywords:
superkritik, siklus Rankine organik, propana, koefisien perpindahan panasAbstract
Penelitian tentang siklus Rankine organik superkritis mulai giat dilakukan sebagai salah satu usaha untuk meningkatkan efisiensi termal dari siklus Rankine organik. Pada kondisi superkritik, sifat-sifat termodinamika dan fisika dari fluida organik berubah dengan sangat drastis disekitar titik kritisnya. Sehingga perhitungan koefisien perpindahan panas konveksi paksa tidak dapat lagi dilakukan dengan asumsi sifat-sifat fluida konstan. Dalam penelitian ini diusulkan sebuah metodologi untuk menghitung nilai koefisien perpindahan panas pada kondisi superkritis. Propana digunakan sebagai fluida organiknya. Tipe alat pemindah panas yang dipakai adalah jenis pipa ganda aliran berlawanan arah dan perhitungan bilangan Nusselt menggunakan korelasi Dittus-Boetler dan Gnielinski. Hasil perhitungan koefisien perpindahan panas dengan menggunakan metodologi ini dapat digunakan untuk menghitung luas daerah perpindahan panas dari alat pemindah panas tipe double pipe counter flow. Selanjutnya hasil perhitungan ini perlu dibandingkan dengan nilai koefisien perpindahan panas yang diperoleh dari hasil eksperimen.Downloads
References
Baik Y. J., Kim M., Chang K. C., Lee Y. S., dan Yoon H. K., 2013, A comparative study of power optimization in low-temperatur geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles, Renewable Energy vol. 54, 78–84.
Cengel, Y. A., 2003, Heat transfer: a practical approach, McGraw Hill Book Company, USA.
Chen, W., Fang, X., Xu, Y., dan Su, X., 2015, An assessment of correlations of force convection heat transfer to water at supercritical pressure, Annals of Nuclear Energy vol. 76, 452-460
Forooghi P. dan Hooman K., 2014, Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers, International Journal of Heat and Mass Transfer vol. 74, 443-459.
Gu Z. dan Sato H., 2001, Performance of supercritical cycles for geothermal binary design, Energy Conversion and Management vol. 43, 961–971.
Javanshir A. dan Sarunac N., 2017, Ther-modynamic analysis of a simple Organic Rankine Cycle, Energy vol. 118, 85–96.
Kang, K. H. dan Chang, S. H, 2009, Experimental study on the heat transfer characteristics during the pressure transients under supercritical pressures, International Journal of Heat and Mass Transfer vol. 52, 4946–4955, doi:10.1016/ j.ijheatmasstransfer.2009.06.005.
Karellas, S. dan Schuster, A., 2008, Supercritical fluid parameters in organic Rankine cycle applications, International Journal of Thermodynamics vol. 11, 101–108.
Karellas, S., Schuster, A., dan Leontaritis, A.D., 2012, Influence of supercritical ORC parameters on plate heat exchanger design, Applied Thermal Engineering vol. 33-34, 70–76, doi:10.1016/j.applthermaleng. 2011.09.013.
Lazova M., Daelman S., Kaya A., Huisseune H., dan De Paepe M., 2014, Heat Transfer in Horizontal Tube at Supercritical Pressure for Organic Rankine Cycle applications, 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14–16 July 2014 Orlando, Florida.
Lazova M., Daenens D., Kaya A., Belleghem M.V., Kosmadakis H.H., Manolakos D., Paepe M.D., 2015, Design of a supercritical heat exchanger for an integrated CPV/T Rankine cycle, 3rd International Seminar on ORC Power Systems, 2-4 Oktober 2015, Brussels, Belgia.
Lemmon E.W., Huber M.I., McLinden M.O., 2010, NIST standard reference database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.1, National Institute of Standard and Technology, Standard Reference Data Program, The U.S. secretary of Commerce.
Schuster A., Karellas S., dan Aumann R., 2010, Efficiency optimization potential in super-critical Organic Rankine Cycles, Energy vol. 35, 1033–1039.
Schröder, E., Neumaier, K., Nagel, F., dan Vetter, C., 2014, Study on heat transfer in heat exchangers for a new supercritical organic Rankine cycle, Heat Transfer Engineering, vol. 35, 1505-1519.
Downloads
Published
How to Cite
Issue
Section
License
COPYRIGHT POLICY
The author(s) of an article published in the Jurnal Teknologi retains ownership of the intellectual property rights in work (s).
PUBLISHING RIGHTS
The author(s) of an article published in the Jurnal Teknologi have unrestricted publication rights. The authors give the Jurnal Teknologi the right to publish the article and designate the Faculty of Engineering Universitas Muhammadiyah Jakarta Publishing as the original publisher of the article.
LICENSING POLICY
Journal of Mechanical Engineering and Sciences is an open-access journal that follows the Creative Commons Non-Commercial 4.0 International License (CC BY-NC 4.0), which states that:
Under this license, the reusers must give appropriate credit, provide a link to the license, and indicate if changes were made. Users may do so in any reasonable manner, but not in any way that suggests the licensor endorses users or their use.
Please take the time to read the whole license agreement (https://creativecommons.org/licenses/by-nc/4.0/). As long as reusers follow the license conditions, the owner cannot withdraw these freedoms. The following components are included under this license:
Attribution: Users must provide appropriate attribution, including a link to the license, and indicate whether or not they made any modifications. Users are free to do so reasonably, but not in a manner that indicates the licensee approves of their usage.
NonCommercial: Users may not use the material for commercial purposes.