METODE DATA MINING UNTUK SELEKSI CALON MAHASISWA PADA PENERIMAAN MAHASISWA BARU DI UNIVERSITAS PAMULANG
Abstract
Keywords
Full Text:
PDFReferences
Abu-Oda, G. S., & El-Halees, A. M. (2015). Data Mining in Higher Education: University Student Dropout Case Study. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5(1), 15-27. doi:10.5121/ijdkp.2015.5102
Aggarwal, C. C. (2015). Data Mining: The Textbook. Switzerland: Springer International Publishing.
Al-Barrak, M. A., & Al-Razgan, M. S. (2015). Predicting Students’ Performance Through Classification: A Case Study. Journal of Theoretical and Applied Information Technology, 167-175.
Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Projects: A Guide for Students in Computer Science and Information Systems (2nd ed.). London: Springer-Verlag.
Dawson, C. W. (2009). Projects in Computing and Information Systems A Student’s Guide (2nd ed.). Great Britain: Pearson Education.
Korb, K. B., & Nicholson, A. E. (2011). Bayesian Artificial Intelligence (2nd ed.). Florida: CRC Press.
Kotu, V., & Deshpande, B. (2015). Predictive Analytics and Data Mining. Concepts and Practice with RapidMiner. Massachusetts: Elsevier Inc.
Larose, D. T., & Larose, C. D. (2015). Data Mining and Predictive Analytics (2nd ed.). New Jersey: John Wiley & Sons, Inc.
Manhães, L. M., Cruz, S. M., & Zimbrão, G. (2014). Evaluating Performance and Dropouts of Undergraduates using Educational Data Mining. Data Mining for Educational Assessment and Feedback (ASSESS 2014) (pp. 1-7). New York: Aspiring Minds.
Pal, S. (2012). Mining Educational Data Using Classification to Decrease Dropout Rate of Students. International journal of multidisciplinary sciences and engineering, 3(5), 35-39.
Rai, S., Saini, P., & Jain, A. K. (2014). Model for Prediction of Dropout Student Using ID3 Decision Tree Algorithm. International Journal of Advanced Research in Computer Science & Technology (IJARCST 2014), 2(1), 142-149.
Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-Validation. In L. Liu, & M. T. Özsu, Encyclopedia of Database Systems (pp. 532-538). Arizona: Springer US.
Sherrill, B., Eberle, W., & Talbert, D. (2011). Analysis of Student Data for Retention Using Data Mining Techniques. 7th Annual National Symposium on Student Retention (pp. 65-66). Charleston: C-IDEA.
Vercellis, C. (2009). Business Intelligence- Data Mining and Optimization for Decision Making. West Sussex: John Wiley & Sons.
Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program. European Journal of Open, Distance and e-Learning, 17(1), 118-133. doi:10.2478/eurodl-2014-0008
Zhang, H., & Wang, Z. (2011). A Normal Distribution-Based Over-Sampling Approach to Imbalanced Data Classification. Advanced Data Mining and Applications - 7th International Conference (pp. 83-96). Beijing: Springer.
DOI: https://doi.org/10.24853/jurtek.10.1.25-36
Refbacks
- There are currently no refbacks.