Adsorbation of Carbon Monoxide Gas With Activated Carbon From Rubber Fruit Shells

Aryo Sasmita, Edward Edward, Rudea Faddhisrah Syahbana

Abstract


Carbon Monoxide (CO) emitted by motorized vehicles can have a negative impact on human health. One way to absorb CO gas is with adsorption technology using activated carbon. Activated carbon has the potential to be used as an adsorbent. This research aims to study the efficiency of CO gas absorption in motorbike emissions using activated carbon from rubber fruit shells. Activated carbon was prepared by carbonization process at 500oC for 1 hour using 10% H3PO4 activator and sieving with a sieve size of 200 mesh. The operating conditions of the adsorption process that were varied were the length of the adsorbent, namely 3; 4; and 5 cm. The activated carbon product is then tested using proximate analysis. The results of proximate analysis show that activated carbon meets SNI 06-3730-1995 with a water content value of 7.6%; ash content 8.7%; volatile matter 8.2%; and fixed carbon 75.5%. The research results showed that the highest removal of CO gas emissions on motorbikes occurred at a contact time of 1 minute of 80.809% with a media thickness of 5 cm. The best adsorption capacity value occurred at a contact time of 1 minute, with an activated carbon media length of 3 cm, namely 158.635 mg/g.


Keywords


activated carbon; adsorption; carbon Monoxide; gas emission; rubber fruit shell

Full Text:

PDF

References


Badan Pusat Statistik (BPS) Kota Pekanbaru. (2019). Kota Pekanbaru dalam Angka 2018.

Catleya, F., Yustiani, Y., & Hasbiah, A. (2021). Tingkat Pencemaran Udara CO Akibat Lalu Lintas Dengan Model Prediksi Udara Skala Mikro Di Jalan Sudirman Jakarta. INFOMATEK: Jurnal Informatika, Manajemen Dan Teknologi, 23(1), 55-68. http://dx.doi.org/10.23969/infomatek.v23i1.4016.

Purwadi, A. Suhandi and Umi Enggarsasi. (2019). “Urban Air Pollution Control Caused by Exhaust Gas Emissions in Developing Country Cities in Public Policy Law Perspective”. International Journal of Energy Economics and Policy 10(1):31-36. DOI: https://doi.org/10.32479/ijeep.8337.

Ruhban, A., dan Rahmadana, I. (2018). Analisis Konsentrasi Karbon Monoksida (CO) dan Sulfur Dioksida (SO2) Udara pada Sumber Bergerak di Jalan A.P Pettarani dan Rapoccini Raya Kota Makassar. Jurnal Sulolipu: Media Komunikasi Sivitas Akademika dan Masyarakat, 18(1): 74-78. DOI: https://doi.org/10.32382/sulolipu.v18i1.723

Aprilia, DN., Nurjazuli, Tri Joko. (2017). Analisis Risiko Kesehatan Lingkungan Pajanan Gas Karbon Monoksida (CO) Pada Petugas Pengumpul Tol di Semarang. Jurnal Kesehatan Masyarakat, 5(3): 367-375. DOI: 10.14710/jkm.v5i3.17250.

Redha, F., Rio, J., dan Ida, H. 2018. Penyerapan Emisi CO dan NOx pada Gas Buang Kendaraan Menggunakan Karbon Aktif dari Kulit Cangkang Biji Kopi. Jurnal Biopropal Industri, 9(1):37-47. DOI: http://dx.doi.org/10.36974/jbi.v9i1.3458.

Olorundare OF, Msagati TA, Krause RW, Okonkwo JO, Mamba BB. (2015). Preparation and use of maize tassels' activated carbon for the adsorption of phenolic compounds in environmental waste water samples. Environ Sci Pollut Res Int. 22(8):5780-92. http://dx.doi.org/10.1007/s11356-014-3742-6.

Cafer, S. (2012). BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis, 95 (2012) 21-24. https://doi.org/10.1016/j.jaap.2011.12.020

Jaya, J.D. Dwi Sandri, Setiawan, A. (2019). Cangkang Biji Karet Dan Aplikasinya Sebagai Koagulan Lateks. Jurnal Teknologi Agro-Industri. 6(2):100-107. DOI: https://doi.org/10.34128/jtai.v6i2.100.

Meilianti. (2017). Karakteristik Karbon Aktif dari Cangkang Buah Karet Menggunakan Aktivator H3PO4. Jurnal Distilasi, 2(2):1-9. DOI: https://doi.org/10.32502/jd.v2i2.1146

Suhdi, and Sheng-Chang Wang. (2021). Fine Activated Carbon from Rubber Fruit Shell Prepared by Using ZnCl2 and KOH Activation. Applied Sciences 11, no. 9: 3994. https://doi.org/10.3390/app11093994.

Miarti, A. and Isdaryanto I. (2022). The Effect Of Utilization Of Activated Carbon From Rubber Seed Shells And Coagulants From Kepok Banana Peels In Well Water Of Kenten Laut Residence Towards Parameter pH, TSS, TDS And Turbidity. International Journal of Social Science 2(4):1937-48. https://doi.org/10.53625/ijss.v2i4.4242.

Arofah, S. M. Naswir, and Yasdi. (2019). Pembuatan Karbon Aktif Dari Cangkang Buah Karet Dengan Aktivator H3PO4 Untuk Adsorpsi Logam Besi (III) Dalam Larutan. Jurnal Engineering 1(2):28-41. https://doi.org/10.22437/jurnalengineering.v1i2.7816.

Al-Manhel, A.J., A.R.S. Al-Hilphy, and A.K. Niamah, (2018). Extraction of chitosan, characterisation and its use for water purification. Journal of the Saudi Society of Agricultural Sciences. 17(2):186-190. https://doi.org/10.1016/j.jssas.2016.04.001.

Wibowo, S., Daniel, P. O. L, Mohammad, K., dan Gustan, P. (2017). Karakterisasi Karbon Pelet Campuran Rumput Gajah (Pennisetum purpureum Scumach) dan Tempurung Nyamplung (Calophyllum inophyllum Linn.). Jurnal Penelitian Hasil Hutan. 35(1):78-8. DOI: https://doi.org/10.20886/jphh.2017.35.1.73-82.

Yuliusman, Ayu, M. P., Hanafi, A., & Nafisah, A. R. (2020). Adsorption of carbon monoxide and hydrocarbon components in motor vehicle exhaust emission using magnesium oxide loaded on durian peel activated carbon. Recent Progress on: Energy, Communities and Cities - Proceedings of International Symposium on Sustainable and Clean Energy, ISSCE 2019: Quality in Research 2019 Article 30021 (AIP Conference Proceedings; Vol. 2230). American Institute of Physics Inc. https://doi.org/10.1063/5.0002351.

Ghofur, A., A. Mursadin, A. Amrullah, and Raihan. (2022). The Potential Of Activated Carbon From Peat Soil As An Absorbent For Hydrocarbon (HC) and Carbon Monoxide (CO) Emissions In Motor Vehicles. Jurnal Rekayasa Mesin. 13(1):251-256 DOI: https://doi.org/10.21776/ub.jrm.2022.013.01.24

Wardhani, S., Elvitriana., dan Vera, V. (2018). Potensi Karbon Aktif Kulit Pisang Kepok (Musa Acuminate L) dalam Menyerap Gas Buang CO dan SO2 pada Emisi Kendaraan Bermotor. Jurnal Serambi Engineering, 3(1):262-270. DOI: https://doi.org/10.32672/jse.v3i1.355.

Nurulita, U. dan Mifbakhuddin. (2016). Adsorbsi Gas Karbon Monoksida (CO) Dalam Ruangan Dengan Karbon Aktif Tempurung Kelapa Dan Kulit Durian. Jurnal Kesehatan Masyarakat. 12(1):61-67. DOI: https://doi.org/10.15294/kemas.v12i1.4029

Wahyuhadi, M.E. A Kusumadewi and R Hadisoebroto. (2023). Effect of Contact Time on The Adsorption Process of Activated Carbon from Banana Peel in Reducing Heavy Metal Cd and Dyes Using a Stirring Tub (Pilot Scale). IOP Conf. Ser.: Earth Environ. Sci. 1203:012035. https://doi.org/10.1088/1755-1315/1203/1/012035.

Sasmita, A., Edward, D.P. Situmeang. CO adsorption performance of rubber wood activated carbon. Materials Today: Proceedings, 63(1):S26-S31. https://doi.org/10.1016/j.matpr.2021.12.561.

Yong X. Gan. (2021). Activated Carbon from Biomass Sustainable Sources. Journal of carbon Research. C7(2):1-33. https://doi.org/10.3390/c7020039.




DOI: https://doi.org/10.24853/jurtek.16.1.1-10

Refbacks

  • There are currently no refbacks.


Jurnal Teknologi Indexed by:

Directory of Open Access JournalGoogle ScholarRoadIndonesia Scientific Journal Database (ISJD)Index Copernicus International (ICI)Garba Rujukan Digital(Garuda)CrossrefScience and Technology Index (SINTA)Directory of Research Journal Indexing (DRJI)CiteFactorResearchgateIndonesia One SearchAcedemia.eduResearchBibAcademickeysBielefeld Academic Search Engine (BASE)JifactorPKP IndexSherpa romeoworldcat


Copyright of Jurnal Teknologi (e-ISSN:2460-0288, p-ISSN:2085-1669).

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Powered by Puskom-UMJ