FLEXURAL STRENGTH OF PINEAPPLE LEAF FIBER REINFORCED METAKAOLIN ZIRCONIA CARBONATE APATITE GEOPOLYMER COMPOSITE

Andrie Harmaji, Susanti Nurfadhila, Bambang Sunendar

Abstract


Developments in the materials engineering have encouraged the incorporation of minerals such as kaolin, zirconia, and carbonate apatite, and natural materials. Indonesia, which has a tropical climate, is overgrown with pineapple plants. Geopolymer is a brittle ceramic material so it is necessary to increase its flexural strength value for composite application. Pineapple leaf fiber can be used as reinforcement in geopolymer composites. This study aims to analyze the effect of adding pineapple leaf fiber (Ananas comosus (L.) Merr.) to the mechanical properties and morphological characteristics of metakaolin-zirconia-carbonate apatite-based geopolymer composites. The use of chitosan coupling agent as a binder between the matrix and filler. The research sample consisted of 4 groups with a total of 5 samples in each group. Fiber varied 0-4% in Geopolymer Composites. Geopolymer Composite samples were tested for flexural strength and Scanning Electron Microscope (SEM). The test results showed that the addition of pineapple leaf fiber increased the flexural strength of the geopolymer composite. The composite without the addition of fiber had a flexural strength of 11.24 MPa, while the addition of 1%, 2.5%, and 4% pineapple fiber resulted in a flexural strength of 20.71 MPa, 11.57 MPa, and 11.01 MPa. The results of the SEM test show a picture of the void with varying sizes. The SEM Images of composite with the addition of 4% pineapple fiber showed the formation of Na2CO3 which explained the decrease in flexural strength compared to the sample without pineapple fiber addition.

Keywords


Geopolymer; Zirconia; Carbonate Apatite; Pineapple Leaf Fiber; Flexural Strength; SEM

Full Text:

PDF

References


Grech, J., & Antunes, E. (2019). Zirconia in dental prosthetics: A literature review. In Journal of Materials Research and Technology (Vol. 8, Issue 5, pp. 4956–4964). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2019.06.043

Ngo, T. (2020). Introduction to Composite Materials. In (Ed.), Composite and Nanocomposite Materials - From Knowledge to Industrial Applications. IntechOpen. https://doi.org/10.5772/intechopen.91285

Fragkouli, M., Tzoutzas, I., & Eliades, G. (2019). Bonding of Core Build-Up Composites with Glass Fiber-Reinforced Posts. Dentistry Journal, 7(4), 105. MDPI AG. Retrieved from http://dx.doi.org/10.3390/dj7040105

Sofiani, E., & Natasya, J. N. (2022). A CLINICAL-RADIOGRAPHIC EVALUATION OF CROWN AND NON-METAL POST RESTORATION AFTER ROOT CANAL TREATMENT USING MODIFIED STRINDBERG CRITERIA IN ACADEMIC DENTAL HOSPITAL YOGYAKARTA. ODONTO : Dental Journal, 9(0), 102. https://doi.org/10.30659/odj.9.0.102-108

Bonchev, A., Radeva, E., Tsvetanova, N. (2017). Fiber Reinforced Composite Posts - A Review of Literature. International Journal of Science and Research (IJSR), Volume 6 Issue 10, October 2017, 1887 – 1893. https://www.ijsr.net/search_index_results_paperid.php?id=24101703,

Alshouibi E, Alaqil F. Masking a Metal Cast Post and Core Using High Opacity e.max Ceramic Coping: A Case Report. J Int Soc Prev Community Dent. 2019 Nov 4;9(6):646-651. doi: 10.4103/jispcd.JISPCD_333_19. PMID: 32039086; PMCID: PMC6905318.

Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced J Med Sci. 2018 Sep 24;6(9):1742-1755. doi: 10.3889/oamjms.2018.378. PMID: 30338002; PMCID: PMC6182519.

Zainal, F. F., Hussin, K., Rahmat, A., Abdullah, M. M. A. B., & Shamsudin, S. R. (2016). A study on hardness behavior of geopolymer paste in different condition. AIP Conference Proceedings, 1756(1), 040001. https://doi.org/10.1063/1.4958762

Qu, F., Li, W., Tao, Z. et al. High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage. Mater Struct 53, 111 (2020). https://doi.org/10.1617/s11527-020-01544-2

Kim K, Kim W. Effect of Heat Treatment on Microstructure and Thermal Conductivity of Thermal Barrier Coating. Materials (Basel). 2021 Dec 16;14(24):7801. doi: 10.3390/ma14247801. PMID: 34947393; PMCID: PMC8708748.

Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel). 2017 Mar 24;10(4):334. doi: 10.3390/ma10040334. PMID: 28772697; PMCID: PMC5506916.

Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. In Frontiers in Materials (Vol. 6, p. 226). Frontiers Media S.A. https://doi.org/10.3389/fmats.2019.00226

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., Hoque, M. E., & Deng, Y. (2015). A review on pineapple leaves fibre and its composites. In International Journal of Polymer Science (Vol. 2015). Hindawi Limited. https://doi.org/10.1155/2015/950567

Shaikh, H. M., Anis, A., Poulose, A. M., Al-Zahrani, S. M., Madhar, N. A., Alhamidi, A., & Alam, M. A. (2021). Isolation and Characterization of Alpha and Nanocrystalline Cellulose from Date Palm (Phoenix dactylifera L.) Trunk Mesh. Polymers, 13(11), 1893. MDPI AG. Retrieved from http://dx.doi.org/10.3390/polym13111893

Sena Neto, A. R., Araujo, M. A. M., Barboza, R. M. P., Fonseca, A. S., Tonoli, G. H. D., Souza, F. v.d., Mattoso, L. H. C., & Marconcini, J. M. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64, 68–78. https://doi.org/10.1016/j.indcrop.2014.10.042

Gopakumar, D. A., Arumughan, V., Pasquini, D., Leu, S. Y., Abdul Khalil, H. P. S., & Thomas, S. (2019). Nanocellulose-Based Membranes for Water Purification. In Nanoscale Materials in Water Purification (pp. 59–85). Elsevier. https://doi.org/10.1016/B978-0-12-813926-4.00004-5

Zivanovic, S., Davis, R. H., & Golden, D. A. (2015). Chitosan as an antimicrobial in food products. In Handbook of Natural Antimicrobials for Food Safety and Quality (pp. 153–181). Elsevier Ltd. https://doi.org/10.1016/B978-1-78242-034-7.00008-6

Feng, J., Venna, S. R., & Hopkinson, D. P. (2016). Interactions at the interface of polymer matrix-filler particle composites. Polymer, 103, 189–195. https://doi.org/10.1016/j.polymer.2016.09.059

Faza, Y., Harmaji, A., Takarini, V., Hasratiningsih, Z., & Cahyanto, A. (2019). Synthesis of porous metakaolin geopolymer as bone substitute materials. In Key Engineering Materials (Vol. 829). https://doi.org/10.4028/www.scientific.net/KEM.829.182




DOI: https://doi.org/10.24853/jurtek.15.2.237-246

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ