Investigation of Heat Exchanger Performance in The Heating Tank Section of Loop FASSIP 03 NT

Dedy Haryanto, Arif Adtyas Budiman, Muhammad Ganjar Putra, Putut Hery Setiawan, Mulya Juarsa

Abstract


The Passive System Simulation Facility (FASSIP) loop is an experimental test facility for a passive cooling system to recover the residual heat from decay produced by the reactor core during accident conditions. The Heating Tank Section (HTS) is one of the components of the FASSIP 03 NT facility. This component is equipped with a heat exchanger, 3 types of heat exchangers can be applied to HTS. Namely heat exchangers of the Straight Pipe Heat Exchanger (SPHE) type, the Straight Pipe Fins Heat Exchanger (SPFHE) type, and the Helical Pipe Heat Exchanger (HPHE) type. A modification was made to increase the efficiency of HTS, namely replacing the electric heater on the HTS from a ceramic band heater type to an immersion heater type. With this modification, it is necessary to know the performance of the heat exchanger on HTS and its speed in reaching operational temperature. The HPHE-type heat exchanger is more efficient than the SPHE-type and SPFHE-type heat exchangers. The HPHE-type heat exchanger has a much larger length of 5.5 m, so the thermal resistance (Rth) is very small, namely 0.003926 ℃/W. To reach the working fluid temperature in the range of 50 – 90 ℃, the HPHE-type heat exchanger requires 35 – 86 minutes.


Keywords


FASSIP 03 NT, Heating tank Section, Straight Pipe Heat Exchanger, Straight Pipe Fins Heat Exchanger, Helical Pipe Heat Exchanger

Full Text:

PDF

References


. Antariksawan, A.R., et al., Simulation of Operational Conditions of FASSIP-02 Natural Circulation Cooling System Experimental Loop. Jurnal Sains dan Teknologi Nuklir Indonesia (Indonesian Journal of Nuclear Science and Technology), 2018. 19(1): p. 41-52.

http://dx.doi.org/10.17146/jstni.2018.19.1.4036

. Juarsa, M., et al., Estimation of natural circulation flow based on temperature in the FASSIP-02 large-scale test loop facility, IOP Conf. Ser. Earth Environ. Sci, 2018. 105(1): p. 1755-1315. http://doi.org/10.1088/1755-1315/105/1/012091

. Sun, D., et al., Experimental evaluation of safety performance of emergency passive residual heat removal system in HPR1000. Nuclear Engineering and Design, 2017. 318: p. 54-60. https://doi.org/10.1016/j.nucengdes.2017.04.003.

. Wang, J., T. Chuang, and Y. Ferng, CFD investigating flow and heat transfer characteristics in a natural circulation loop. Annals of Nuclear Energy, 2013. 58: p. 65-71. https://doi.org/10.1016/j.anucene.2013.01.015. https://doi.org/10.1016/j.anucene.2013.01.015

. Haryanto, D., et al. Mechanical strength analysis on heating tank section in the FASSIP-03 NT loop based on computer-aided simulation. in AIP Conference Proceedings. 2022. AIP Publishing. https://doi.org/10.1063/5.0095608

. Haryanto, D., et al., Investigasi Kinerja Ceramic Band Heater Pada Heating Tank Section Untai FASSIP-03 NT. AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin, 2023. 9(2): p. 64-72. https://doi.org/10.32832/ame.v9i2

. Cengel, Y.A., Heat and mass transfer. Second ed. 2000, 1221 Avenue of America, New York, NY 10020: McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc.

. Haryanto, D., Desain Isolator Termal pada Hotleg dan Coldleg FASSIP-02 Mod. 01. ROTASI, 2023. 25(2): p. 70-76. https://doi.org/10.14710/rotasi.25.2.70-76

. Heater, U. apa-itu-immersion-heater-dan-bagaimana-cara-perawatannya. [cited 2023 July].

. Holman, J.P. and E. Jasjfi, Perpindahan Kalor, edisi keenam. Jakarta: Penerbit Erlangga. 1994.

. Incropera, F.P., et al., Fundamentals of heat and mass transfer. Vol. 6. 1996: Wiley New York.

. agpindonesia. ASME B36.19 / JIS G 3459 (Sch10S ~ Sch40S). [cited 2023 July].

. Kadir, A., Dasar Pemrograman MATLAB. 2019, Jl. Beo 38-40 Yogyakarta 55281: ANDI.

. Noufal, M., et al., Analisis Unjuk Kerja Pemanas dan Pendingin Di Untai Fasilitas Simulasi Sistem Pasif. SIGMA EPSILON-Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 2016. 19(2). http://dx.doi.org/10.17146/sigma.2015.19.2.3180

. Shevaladze. A., P., A.E., Haryanto, D., Rosidi, A., Tasri, A., Juarsa, M. Karakteristik Temperatur Tangki Pemanas dan Bilangan Reynolds Selama Aliran Sirkulasi Alam pada Untai Uji FASSIP-02. in Seminar Nasional Energi, Telekomunikasi dan Otomasi (SNETO). 2021. https://eproceeding.itenas.ac.id/index.php/sneto/article/view/714

. Haryanto, D., A. Rosidi, and M. Juarsa, Perhitungan Desain Ketebalan Isolator Termal Pada Water Heating Tank FASSIP-02 Mod. 01. JIIF (Jurnal Ilmu dan Inovasi Fisika), 2023. 7(2): p. 77-87. https://doi.org/10.24198/jiif.v7i2.47024

. Mustangin, S., I. Perancangan Modifikasi Heater dan Sistem Kontrol Water Bath Kapasitas 9 Liter. in Prosiding Seminar Rekayasa Teknologi (SemResTek). 2018. https://teknik.univpancasila.ac.id/semrestek/prosiding/index.php/12345/article/view/234

. Alam, T.H.I. Rancang Bangun Prototype Pengering Padi Otomatis Berbasis Mikrokontroler AT89S52. in Prosiding Seminar Nasional Teknoka. 2016. http://10.31227/osf.io/8hvqa

. Haryanto, D., et al. Perhitungan dan Penentuan Jenis Aliran pada Untai FASSIP-03 NT Saat Komisioning Berdasarkan Variasi Daya Pemanas. in Prosiding Seminar Sains Nasional dan Teknologi. 2022. http://dx.doi.org/10.36499/psnst.v12i1.7196

. Haryanto, D., et al., Karakterisasi Prototipe Heater Element System pada Untai Uji RCCS-RDNK menggunakan Kamera Infra Merah. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 2020. 8(2): p. 313. https://doi.org/10.26760/elkomika.v8i2.313

. Fauzi, A., et al., Karakterisasi Laju Aliran Massa Pada Pipa Bagian Heater Berdasarkan Perubahan Daya Di Untai FASSIP-01 Mod. 1. AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin, 2019. 5(1): p. 6-12. https://doi.org/10.32832/ame.v5i1.2331




DOI: https://doi.org/10.24853/jurtek.16.1.41-52

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ