Slope Stability Evaluation and Geometrical Recommendation Using The Morgenstern Price Method
Abstract
The study is located on PT Indocement Tunggal Prakarsa Tbk., which is still actively engaged in mining operations. The study aimed to determine the slope Safety Factor (SF) and offer suggestions for safe slope geometry for mining operations. Primary data collection through observation of lithology conditions, sample testing in the laboratory, scanline mapping, slope geometry measurements, and secondary data obtained from company inventories and related sources. The kinematic approach is used to assess the risk of landslides. This slope stability study uses boundary equilibrium based on the Morgenstern Price and Mohr-Coulomb failure criteria. Limestone is the majority of the rocks in the location. The kinematic analysis demonstrated that direct toppling and wedge toppling are the landslide potential at the research location. Using the non-circular boundary equilibrium approach, slope stability analysis was carried out on four Regions with dry and saturated groundwater conditions i.e, Regions A', B140, C120, and C135. The four Regions have stable slopes and are in good condition (SF values over 1.25). For the excavation to be carried out optimally, the recommendations for optimization of the overall slope geometry are given, namely, the height of the bench is 10 m, and the width of the ladder is 4 m. The slope angle is 80o, with SF value of 3.035 in dry conditions and an SF value of 2.021 in saturated conditions.
Keywords
Full Text:
PDFReferences
Shelley, R.C., Robin, L. dan Plimer, R., (2005). Encyclopedia of Geology. United Kingdom: Elsevier Academic Press.
Santika, A. W. dan Mulyadi, D., (2017). Geokimia Batugamping Daerah Montong, Tuban, Jawa Timur. Riset Geologi dan Pertambangan, vol. 27, no. 2.
Madiadipoera, T., (1990). Bahan Galian Industri di Indonesia. Bandung: Direktorat Jenderal Sumber Daya Mineral Republik Indonesia.
Mossa J, James LA. Impacts of mining on geomorphic systems. In: James LA, Harden C, Clague J, (2013). Geomorphology of human disturbances, climate change, and natural hazards, Treatise on Geomorphology (J. Shroder, J., Ed. In Chief); 2013; 13: p. 74–95.
.[5] Sinha, S. and Banerjee, S. P.(1994). A Method for Estimating Fugitive Particulate Emission from Haul Roads in Opencast Coal Mines and Mitigative Measures, in S. P. Banerjee (ed.), Proceedings of Second National Seminar on Minerals and Ecology, Dhanbad, India, pp. 217–227.
Central Mining Research Institute (CMRI). (1998). Determination of Emission Factor for Various Opencast Mining Activities, GAP/9/EMG/MOEF/97, Environmental Management Group, Dhanbad, India.
Verma H K, Samadhiya N K, Singh M., Goel R K and Singh P K.(2018). Blast induced rock mass damage around tunnels. J. Tunneling and Underground Space Technology 71 149-58. https://doi.org/10.1016/j.tust.2017.08.019
Yamaguchi, U., & Shimotani, T. (1986). A case study of slope failure in a limestone quarry. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 23(1), 95–104. https://doi.org/10.1016/0148-9062(86)91670-0
Harries, N., Noon, D., dan Pritchett, (2009). Slope Stability Radar for Managing Rock Fall Risk in Open Cut Mines. Proceeding of the 3rd CANUS Rock Mechanics Symposium, Toronto 2009.
Brady, B. H. G., dan Brown, E. T., (1985). Rock Mechanics for Underground Mining. George Allen and Unwin: London.
Sjoberg, J., (1996). Large Scale Slope Stability in Open Pit Mining – A Review. Technical Report, Devision of Rock Mechanics, Lulea University of Technology.
Liu,X.R, Xu,B., Liu, Y. Q., Wang,J., and Lin,G. (2020). Cumulative damage and stability analysis of bedding rock slope under frequent microseisms, Chinese Journal of Geotechnical Engineering, vol. 42, no. 4, pp. 632–641.
Xu, L. L. Zhang, Q. L. and Feng, R. (2021). Numerical simulation of backfill strength based on optimization of stope structural parameters. Gold Science and Technology, vol. 29, no. 3, pp. 421–432.
Jiang, Z. A. , Wang, Y. P. and Men, L. G. (2021). Ventilation control of tunnel drilling dust based on numerical simulation, Journal of Central South University, vol. 28.
Tao, Z. G., Zhu, C., He, M. C., and Karakus, M. (2021). A physical modeling-based study on the control mechanisms of Negative Poisson’s ratio anchor cable on the stratified toppling deformation of anti-inclined slopes.International Journal of Rock Mechanics and Mining Sciences, vol. 138, Article ID 104632. https://doi.org/10.1016/j.ijrmms.2021.104632
Zhu,C., He,M., Karakus,M., Zhang,X., Tao, Z. (2021). Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson’s ratio cable, Bulletin of Engineering Geology and the Environment, vol. 80, no. 4, pp. 3365–3380.
Wang,Y., Feng, W. K., Hu, R. L. and Li, C. H. (2021). Fracture evolution and energy characteristics during marble failure under triaxial fatigue cyclic and confining pressure unloading (FC-CPU) conditions,” Rock Mechanics and Rock Engineering, vol. 54, no. 2, pp. 799–818.
Li,B., Bao,R., Wang,Y., Liu,R., and Zhao,C., (2021). Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions, Rock Mechanics and Rock Engineering, vol. 54, no. 3, pp. 1–20.
Bieniawski, Z. T., (1989). Engineering Rock Mass Classifications. John-Wiley: New York.
Romana M (1985). New adjustment ratings for application of Bieniawski classification to slopes. In: proceedings of international symposium on the role of rock mechanics. Zacatecas, ISRM, pp 49–53.
Kumar M, Rana S, Panta DP, Patel RC. (2017). Slope stability analysis of Balia Nala landslide, Kumaun Lesser Himalaya, Nainital, Uttarakhand, India. J Rock Mech Geotech Eng 9:150–158. https://doi.org/10.1016/j.jrmge.2016.05.009
Morales, M., Panthi, K. K. ., Botsialas, K., (2019). Slope stability assessment of an open pit mine using three-dimensional rock mass modeling, Bull Eng Geol Environ.78:1249–1264. https://doi.org/10.1007/s10064-017-1175-4
Rusydy, I., Fathani, T.F., Al‑Huda, N., Sugiarto, Iqbal, K., Jamaluddin, K., Meilianda, M., (2021). Integrated approach in studying rock and soil slope stability in a tropical and active tectonic country, Environmental Earth Sciences 80:58 https://doi.org/10.1007/s12665-020-09357-w
Pasha, S. R., Sunarwan, B., dan Syaiful, M., (2018). Analisis Potensi Longsor Menggunakan Metode Kinematik pada Tambang Terbuka Limestone Narogong PT Holcim Indonesia Tbk Kecamatan Cileungsi Kabupaten Bogor Jawa Barat. Jurnal Online Mahasiswa (JOM) Bidang Teknik Geologi, vol.1, no. 1.
Sirait, B., Pulungan, Z., & Pujianto, E., (2021). Identifikasi potensi longsoran lereng pada kuari batugamping menggunakan analisis kinematika. Jurnal Teknologi Mineral dan Batubara, vol. 17, no. 2, hlm. 61-75.
ISRM, (1981). Rock Characterization Testing and Monitoring ISRM Suggested Method. E.T. Brown (Ed). Pergamon Press, hlm. 5 - 30.
Kementerian Pekerjaan Umum. (2017). Peta Percepatan Puncak di Batuan Dasar (Sb) untuk Probabilitas Terlampau 10% dalam 50 Tahun.
Badan Standarisasi Nasional. (2010). SNI 7571 Tahun 2010 Tentang Baku Tingkat Getaran Peledakan pada Kegiatan Tambang Terbuka terhadap Bangunan.
Shobari, A. F., Mufti, I. J., Khoirullah, N., Zakaria, Z., Sophiana, R. I., dan Mulyo, A. (2019). Hubungan Nilai Koefisien Gempa Horizontal (Kh) dengan Nilai Safety Factor (FS) Daerah Cilengkrang, Jawa Barat. Padjadjaran Geoscience Journal, vol. 3, no. 4, hlm. 243 – 253.
Waskita, A. D., Febriadi, A., Rampan, R., Oktavianto, H., dan Patmo, N. (2020). Analisis Kestabilan Lereng Batuan Lunak dengan Model Material Validated Transition pada Rancangan PIT Wara 2020 PT Adaro Indonesia. Prosiding Temu Profesi Tahunan PERHAPI, 865-874.
Hoek, E. and Bray, J.W. (1981). Rock Slope Engineering. Revised 3rd Edition, The Institution of Mining and Metallurgy, London, 341-351.
Deere, D. U., dan Deere, D. W., (1989). Rock Quality Designation (RQD) after Twenty Years. Deere (Don U) Consultant Gainesville Fl.
Zhang, L., (2016). Determination and applications of rock quality designation (RQD), Journal of Rock Mechanics and Geotechnical Engineering Volume 8, Issue 3, June 2016, Pages 389-397. https://doi.org/10.1016/j.jrmge.2015.11.008
Öge, I.F, (2017). Assessing Rock Mass Permeability Using Discontinuity Properties, Symposium of the International Society for Rock Mechanics, Procedia Engineering 191 ( 2017 ) 638 – 645.https://doi: 10.1016/j.proeng.2017.05.373
Hoek, E. dan Marinos, P., (2000). GSI: a Geologically Friendly Tool for Rock Mass Strength Estimation. ISRM International Symposium. OnePetro.
Xing, Y., Kulatilake, P.H.S.W., Sandbak, L.A. (2018). Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine, Engineering Geology Volume 238, 2 May 2018, Pages 62-75. https://doi.org/10.1016/j.enggeo.2018.03.010
Guerriero, L., Prinzi, E.P., Calcaterra, D., Ciarcia, S., Di Martire, D., Guadagno, F.M., Ruzza, G., Revellino, P., (2021). Kinematics and geologic control of the deep-seated landslide affecting the historic center of Buonalbergo, southern Italy, Geomorphology Volume 394, 1 December 2021, 107961. https://doi.org/10.1016/j.geomorph.2021.107961.
Bowles, J. E., (1984). Physical and Geotechnical Properties of Soil: Second Edition. McGraw-Hill: New York, USA.
Acharya, K.P.; Netra, P.B.; Ranjan, K.D.; Ryuichi, Y.(2016). Seepage and slope stability modelling of rainfall-induced slope failures in topographic hollows. Geomat. Nat. Hazards Risk 7, 721–746. https://doi.org/10.1080/19475705.2014.954150
DOI: https://doi.org/10.24853/jurtek.16.1.53-64
Refbacks
- There are currently no refbacks.