PENGARUH SURFACE TREATMENT TERHADAP KETAHANAN KOROSI BAJA KARBON TERCOATING ZINC FOSFAT PADA MEDIA ASAM SULFAT

Adhi Setiawan, Amilia Kristina Dewi, Mukhlis Mukhlis

Abstract


Asam sulfat menyebabkan masalah korosi yang serius terutama pada material baja karbon sehingga diperlukan pengendalian laju korosi dengan metode coating dan surface treatment pada logam. Pada Penelitian ini telah dilakukan analisis pengaruh surface treatment serta tebal lapisan coating zinc fosfat terhadap ketahanan korosi material baja karbon A36. Pengujian korosi dilakukan dengan menggunakan metode weight loss di dalam larutan asam sulfat selama 168 jam. Perlakuan permukaan baja karbon sebelum di coating dilakukan dengan menggunakan metode sand blasting SA 2,5 dan power tool wire brush St 3. Tebal lapisan coating zinc fosfat pada baja karbon yang digunakan yaitu 50 μm, 75 μm, dan 90 μm. Hasil penelitian menunjukkan bahwa ketahanan korosi dari baja karbon yang mengalami sand blasting SA 2.5 sebelum dilakukan coating memiliki ketahanan korosi yang lebih baik dibandingkan dengan dibandingkan dengan menggunakan power tool wire brush St 3. Metode sand blasting SA 2,5 menghasilkan kekasasaran permukaan yang lebih tinggi dibandingkan power tool wire brush St 3. Permukaan yang kasar menghasilkan adhesi coating menjadi lebih baik sehingga mengarah pada ketahanan korosi yang tinggi. Selain itu, ketahanan korosi pada logam baja karbon dapat diperbaiki dengan meningkatkan tebal lapisan coating zinc fosfat di dalam asam sulfat  pada konsentrasi 10%,  62%, serta 98%


Keywords


Coating, Korosi, Surface Treatment

Full Text:

PDF

References


Ahmad, Z. 2006. Principles of Corrosion Engineering and Corrosion Control. Elsevier Science and Technology Books.

Bakhtiari, A., 2014. The Relationship Between Surface Treatments and Corrosion Resistance of Hot-Dip Galvanized steel. J. of Metallurgical Materials and Engineering, 20, pp. 165–170.

Baldan, A., 2004. Review Adhesively-Bonded Joints and Repair in Metallic Alloys Polymers and Composite Materials: Adhesives Adhesion Theories and Surface Pre-treatment, J. of Materials Science, 39, pp. 1–49.

Claire, L., Marie, G., Julien, G., Michel, S.J., Jean, R., Joëlle, M.M., Stefano, R., and Michele, F. 2016. New architectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel. J. of Progress in Organic Coatings, 99, pp. 337–345.

Costa, M., and Klein, C., 2006. Toxicity and Carcinogenicity of Chromium Compounds in Humans, J. of Critical Reviews Toxicology, 36, 155 –163.

Dwivedi, D., Lepkova, K. and Becker, T. 2017. Carbon Steel Corrosion: a Review of Key Surface Properties and Characterization Methods. J. of Royal Society of Chemistry Advance, 7, pp. 4580–4610.

Ellison, B.T., Schmeal, W.R., 1978, Corrosion of Steel in Concentrated Sulfuric Acid, J. of The Electrochemical Society, 125, pp. 524–531.

Evgeny, B., Hughes, T., and Eskin, D. 2016. Effect of Surface Roughness on Corrosion Behaviour of Low Carbon Steel in Inhibited 4 M Hydrochloric Acid Under Laminar and Turbulent Flow Conditions. J. of Corrosion Science, 103, pp. 196-205.

Girčienė, O., Ramanauskas, R., Gudavičiūtė, L., and Martušienė, A., 2013. The Effect of Phosphate Coatings on Carbon Steel Protection from Corrosion in a Chloride-Contaminated Alkaline Solution. J. of CHEMIJA, 24, pp. 251–259.

Hao, Y., Liu, F., and Han, E.H., 2013. Protection of Epoxy Coatings Containing Polyaniline Modified Ultra-Short Glass Fibers. J. of Progress in Organic Coatings, 76, pp. 571–580.

Jin F.L., Li, X., and Park, S.J. 2015. Synthesis and Application of Epoxy Resins: a Review. Journal of Industrial and Engineering Chemistry, 29, pp. 1–11.

Kestens, L. A. I. and Petrov, R. 2008. Chapter 22: Texture Control in Manufacturing Current and Future Grades of Low‐Carbon Steel Sheet. Materials Processing and Texture, John Wiley and Sons.

Khorasanizadeh, S., 2010. The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion. International. Journal of Industrial and Manufacturing Engineering, 4, pp. 513–521.

Mandal, S., and Natarajan, S., 2004. Solvothermal Synthesis and Structures of One and Two Dimensional Zinc Phosphates. Inorganica Chimica Acta, 357, pp. 1437–1443.

Panossian, Z., Almeida, N.L., Sousa, R.M.F., Pimenta, G.S., and Marques, L.B.S., 2012. Corrosion of Carbon Steel Pipes and Tanks by Concentrated Sulfuric Acid: A Review. J. Corrosion Science, 58, pp.1–11.

Peabody, A.W., 2003. Control of Pipeline Corrosion 2nd Edition. Texas: The National Association of Corrosion Engineers (NACE).

Setiawan, A., Novitrie, N.A., and Ashari, L., 2017. Analisis Korosi Logam Tembaga dan Aluminium pada Biodiesel yang Disintesis dari Minyak Goreng Bekas. Seminar MASTER 2017, 2, pp. 149–154.

Shi, C., Shao, Y., Wang, Y., Meng, G., and Liu, B., 2018. Influence of Submicron-Sheet Zinc Phosphate Synthesised by Sol-Gel Method on Anticorrosion of Epoxy Coating. J. of Progress in Organic Coatings, 117, pp. 102–117.

Song, F.M., Kirk, D.W., Graydon, J.W. and Cormack, D.E., 2004. Predicting Carbon Dioxide Corrosion of Bare Steel Under an Aqueous Boundary Layer. J. of Corrosion, 60 , pp. 736–748.

Susilowati, S.E., and Sumardiyanto, D., 2018. Penerapan Marine Growth Prevention System (MPGS) Pada Pengoperasian Kapal Untuk Menghambat Laju Korosi. Jurnal Teknologi, 10(2), pp. 95–102.

Swaidani, A.M., 2017. Modified Zinc Phosphate Coatings: A Promising Approach to Enhance the Anti-Corrosion Properties of Reinforcing Steel. MOJ Civil Engineering, 3, pp. 1–6.

Tamilselvi, M., Kamaraj, P., Arthanareeswari, M. and Devikala, S., 2015. Nano Zinc Phosphate Coatings for Enhanced Corrosion Resistance of Mild Steel. J. of Applied Surface Science, 327, 218–225.

Walter, R., and Kannan, M.B., 2011. Influence of Surface Roughness on the Corrosion Behaviour of Magnesium Alloy. J. of Materials and Design, 32, pp. 2350–2354.

Xie, N., Feng, D., Li, H., Gong, C., and Zhen, L., 2012. Shape Controlled Synthesis of Zinc Phosphate Nanostructures by an Aqueous Solution Route at Room Temperature. J. of Material Letter, 82, pp. 26–28.

Zhang, X., Zhang, Y., MA, Q.Y., Dai, Y., Hu, F.P., Wei, G.B., Xu, T.C., Zeng, Q.W., Wang, S.Z., Xie, W.D., 2017. Effect of Surface Treatment on the Corrosion Properties of Magnesium-Based Fibre Metal Laminate. 396, J. of Applied Surface Science, pp. 1264–1272.

Ahmad, Z. 2006. Principles of Corrosion Engineering and Corrosion Control. Elsevier Science and Technology Books.

Bakhtiari, A., 2014. The Relationship Between Surface Treatments and Corrosion Resistance of Hot-Dip Galvanized steel. J. of Metallurgical Materials and Engineering, 20, pp. 165–170.

Baldan, A., 2004. Review Adhesively-Bonded Joints and Repair in Metallic Alloys Polymers and Composite Materials: Adhesives Adhesion Theories and Surface Pre-treatment, J. of Materials Science, 39, pp. 1–49.

Claire, L., Marie, G., Julien, G., Michel, S.J., Jean, R., Joëlle, M.M., Stefano, R., and Michele, F. 2016. New architectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel. J. of Progress in Organic Coatings, 99, pp. 337–345.

Costa, M., and Klein, C., 2006. Toxicity and Carcinogenicity of Chromium Compounds in Humans, J. of Critical Reviews Toxicology, 36, 155 –163.

Dwivedi, D., Lepkova, K. and Becker, T. 2017. Carbon Steel Corrosion: a Review of Key Surface Properties and Characterization Methods. J. of Royal Society of Chemistry Advance, 7, pp. 4580–4610.

Ellison, B.T., Schmeal, W.R., 1978, Corrosion of Steel in Concentrated Sulfuric Acid, J. of The Electrochemical Society, 125, pp. 524–531.

Evgeny, B., Hughes, T., and Eskin, D. 2016. Effect of Surface Roughness on Corrosion Behaviour of Low Carbon Steel in Inhibited 4 M Hydrochloric Acid Under Laminar and Turbulent Flow Conditions. J. of Corrosion Science, 103, pp. 196-205.

Girčienė, O., Ramanauskas, R., Gudavičiūtė, L., and Martušienė, A., 2013. The Effect of Phosphate Coatings on Carbon Steel Protection from Corrosion in a Chloride-Contaminated Alkaline Solution. J. of CHEMIJA, 24, pp. 251–259.

Hao, Y., Liu, F., and Han, E.H., 2013. Protection of Epoxy Coatings Containing Polyaniline Modified Ultra-Short Glass Fibers. J. of Progress in Organic Coatings, 76, pp. 571–580.

Jin F.L., Li, X., and Park, S.J. 2015. Synthesis and Application of Epoxy Resins: a Review. Journal of Industrial and Engineering Chemistry, 29, pp. 1–11.

Kestens, L. A. I. and Petrov, R. 2008. Chapter 22: Texture Control in Manufacturing Current and Future Grades of Low‐Carbon Steel Sheet. Materials Processing and Texture, John Wiley and Sons.

Khorasanizadeh, S., 2010. The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion. International. Journal of Industrial and Manufacturing Engineering, 4, pp. 513–521.

Mandal, S., and Natarajan, S., 2004. Solvothermal Synthesis and Structures of One and Two Dimensional Zinc Phosphates. Inorganica Chimica Acta, 357, pp. 1437–1443.

Panossian, Z., Almeida, N.L., Sousa, R.M.F., Pimenta, G.S., and Marques, L.B.S., 2012. Corrosion of Carbon Steel Pipes and Tanks by Concentrated Sulfuric Acid: A Review. J. Corrosion Science, 58, pp.1–11.

Peabody, A.W., 2003. Control of Pipeline Corrosion 2nd Edition. Texas: The National Association of Corrosion Engineers (NACE).

Setiawan, A., Novitrie, N.A., and Ashari, L., 2017. Analisis Korosi Logam Tembaga dan Aluminium pada Biodiesel yang Disintesis dari Minyak Goreng Bekas. Seminar MASTER 2017, 2, pp. 149–154.

Shi, C., Shao, Y., Wang, Y., Meng, G., and Liu, B., 2018. Influence of Submicron-Sheet Zinc Phosphate Synthesised by Sol-Gel Method on Anticorrosion of Epoxy Coating. J. of Progress in Organic Coatings, 117, pp. 102–117.

Song, F.M., Kirk, D.W., Graydon, J.W. and Cormack, D.E., 2004. Predicting Carbon Dioxide Corrosion of Bare Steel Under an Aqueous Boundary Layer. J. of Corrosion, 60 , pp. 736–748.

Susilowati, S.E., and Sumardiyanto, D., 2018. Penerapan Marine Growth Prevention System (MPGS) Pada Pengoperasian Kapal Untuk Menghambat Laju Korosi. Jurnal Teknologi, 10(2), pp. 95–102.

Swaidani, A.M., 2017. Modified Zinc Phosphate Coatings: A Promising Approach to Enhance the Anti-Corrosion Properties of Reinforcing Steel. MOJ Civil Engineering, 3, pp. 1–6.

Tamilselvi, M., Kamaraj, P., Arthanareeswari, M. and Devikala, S., 2015. Nano Zinc Phosphate Coatings for Enhanced Corrosion Resistance of Mild Steel. J. of Applied Surface Science, 327, 218–225.

Walter, R., and Kannan, M.B., 2011. Influence of Surface Roughness on the Corrosion Behaviour of Magnesium Alloy. J. of Materials and Design, 32, pp. 2350–2354.

Xie, N., Feng, D., Li, H., Gong, C., and Zhen, L., 2012. Shape Controlled Synthesis of Zinc Phosphate Nanostructures by an Aqueous Solution Route at Room Temperature. J. of Material Letter, 82, pp. 26–28.

Zhang, X., Zhang, Y., MA, Q.Y., Dai, Y., Hu, F.P., Wei, G.B., Xu, T.C., Zeng, Q.W., Wang, S.Z., Xie, W.D., 2017. Effect of Surface Treatment on the Corrosion Properties of Magnesium-Based Fibre Metal Laminate. 396, J. of Applied Surface Science, pp. 1264–1272.




DOI: https://doi.org/10.24853/jurtek.11.1.57-66

Refbacks

  • There are currently no refbacks.


Jurnal Teknologi Indexed by:

Directory of Open Access JournalGoogle ScholarRoadIndonesia Scientific Journal Database (ISJD)Index Copernicus International (ICI)Garba Rujukan Digital(Garuda)CrossrefScience and Technology Index (SINTA)Directory of Research Journal Indexing (DRJI)CiteFactorResearchgateIndonesia One SearchAcedemia.eduResearchBibAcademickeysBielefeld Academic Search Engine (BASE)JifactorPKP IndexSherpa romeoworldcat


Copyright of Jurnal Teknologi (e-ISSN:2460-0288, p-ISSN:2085-1669).

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Powered by Puskom-UMJ