PENGARUH MEDAN MAGNET MENGINDUKSI BUSUR PADA PENGELASAN AUTOGENOUS TUNGSTEN INERT GAS SAMBUNGAN TUMPUL BAJA TAHAN KARAT 304
Abstract
Dalam studi ini, penelitian mengenai penggunaan metode External Magnetic Field - Tungsten Inert Gas pada aplikasi sambungan tumpul dilakukan untuk mengetahui pengaruh dari pemampatan busur las terhadap kualitas hasil sambungan tumpul pelat tipis SS 304. Proses pengelasan ini dilakukan tanpa menggunakan logam pengisi tambahan (autogenous weld). Pada penelitian ini medan magnet luar ditimbulkan dengan meletakkan solenoid magnetik di sekeliling obor las TIG. Pengaktifkan medan elektromagnetik ini dilakukan secara dinamis dengan menggunakan mikrokontroler. Parameter pengelasan yang digunakan yaitu arus pengelasan 100; 105; 110 A dan kecepatan pengelasan 1,6; 1,8; 2,05 mm/s. Hasil penelitian ini menunjukkan bahwa pengelasan EMF-TIG dapat menghasilkan lebar manik yang lebih seragam di sepanjang jalur las dengan standar deviasi sebesar 0,08 dibandingkan dengan las TIG konvensional sebesar 0,12. Peningkatan kecepatan las sebesar 2,05 mm/s menyebabkan tidak berpengaruhnya penambahan medan magnet luar terhadap lebar manik las. Parameter arus 105 A dengan kecepatan 1,6; 1,8; 2,05 mm/s menghasilkan pemampatan lebar manik atas berturut- turut sebesar 0,87; 0,61; 0,1 mm. Parameter pengelasan dengan arus 105 A dan kecepatan las 1,6 mm/s memiliki efek pemampatan manik atas yang lebih besar yaitu sebesar 0,84 mm dibandingkan arus 110 A yaitu 0,38 mm.
Full Text:
PDFReferences
Ahmadi, E, & Ebrahimi, AR. (2015). Welding of 316L austenitic stainless steel with activated tungsten inert gas process. Journal of materials engineering and performance, 24(2), 1065-1071.
Baskoro, Ario Sunar, Frisman, S, & Yogi, Adrian. (2014). Improvement of Tungsten Inert Gas (TIG) Welding Penetration Using the Effect of Electromagnetic Field. Paper presented at the Applied Mechanics and Materials.
Baskoro, A. S., Fauzian, A., Basalamah, H., Kiswanto, G., & Winarto, W. (2018). Improving weld penetration by employing of magnetic poles’ configurations to an autogenous tungsten inert gas (TIG) welding. The International Journal of Advanced Manufacturing Technology, 99(5-8), 1603-1613.
Chen, Tang, Xiaoning, Zhang, Bai, Bing, Xu, Zimu, Wang, Cheng, & Xia, Weidong. (2015). Numerical Study of DC Argon Arc with Axial Magnetic Fields. Plasma Chemistry and Plasma Processing, 35(1), 61-74.
Eisazadeh, Hamid, Haines, Derek Jason, & Torabizadeh, Monavareh. (2014). Effects of gravity on mechanical properties of GTA welded joints. Journal of Materials Processing Technology, 214(5), 1136-1142.
Jamshidi Aval, H, Farzadi, A, Serajzadeh, S, & Kokabi, AH. (2009). Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. The International Journal of Advanced Manufacturing Technology, 42(11), 1043-1051.
Jian, Luo, Zongxiang, Yao, & Keliang, Xue. (2016). Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. The International Journal of Advanced Manufacturing Technology, 84(1-4), 647-661.
Li, Lin-Cun, Bai, Bing, Zhou, Zhi-Peng, & Xia, Wei-Dong. (2008). Axial magnetic-field effects on an argon arc between pin and plate electrodes at atmospheric pressure. IEEE Transactions on Plasma Science, 36(4), 1078.
Lin-Cun, Li, & Wei-Dong, Xia. (2008). Effect of an axial magnetic field on a DC argon arc. Chinese Physics B, 17(2), 649.
Nomura, Kazufumi, Ogino, Yosuke, Haga, Takuya, & Hirata, Yoshinori. (2010). Influence of magnet configurations on magnetic controlled TIG arc welding.
Nomura, Kazufumi, Ogino, Yousuke, & Hirata, Yoshinori. (2012). Shape control of TIG arc plasma by cusp-type magnetic field with permanent magnet. Welding International, 26(10), 759-764.
Okano, Shigetaka, & Mochizuki, Masahito. (2016). Experimental study on generation characteristics of weld buckling distortion in thin plate. Transactions of the JSME (in Japanese), 82(834), 15-00314-00315-00314. doi: 10.1299/transjsme.15-00314
Okano, Shigetaka, & Mochizuki, Masahito. (2017). Transient distortion behavior during TIG welding of thin steel plate. Journal of Materials Processing Technology, 241, 103-111.
Shoichi, M, Yukio, M, Koki, T, Yasushi, T, Yukinori, M, & Yusuke, M. (2013). Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding. Science and Technology of Welding and joining, 18(1), 38-44.
Sun, Qingjie, Wang, Jianfeng, Cai, Chunwei, Li, Qian, & Feng, Jicai. (2015). Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding. The International Journal of Advanced Manufacturing Technology, 1-7.
Tseng, Kuang-Hung. (2013). Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder technology, 233, 72-79.
Tseng, Kuang-Hung, & Chen, Kuan-Lung. (2012). Comparisons between TiO2-and SiO2-flux assisted TIG welding processes. Journal of nanoscience and nanotechnology, 12(8), 6359-6367.
Tseng, Kuang-Hung, & Chuang, Ko-Jui. (2012). Application of iron-based powders in tungsten inert gas welding for 17Cr–10Ni–2Mo alloys. Powder technology, 228, 36-46.
Tseng, Kuang-Hung, & Hsu, Chih-Yu. (2011). Performance of activated TIG process in austenitic stainless steel welds. Journal of Materials Processing Technology, 211(3), 503-512.
Wu, Hong, Chang, Yunlong, Lu, Lin, & Bai, Jin. (2017). Review on magnetically controlled arc welding process. The International Journal of Advanced Manufacturing Technology, 1-11.
ZhongQin, Lin, YongBing, Li, YaSheng, Wang, & GuanLong, Chen. (2005). Numerical analysis of a moving gas tungsten arc weld pool with an external longitudinal magnetic field applied. The International Journal of Advanced Manufacturing Technology, 27(3-4), 288-295.
DOI: https://doi.org/10.24853/jurtek.13.1.89-100
Refbacks
- There are currently no refbacks.