PERANCANGAN REAKTOR UNTUK PRODUKSI BIODIESEL GENERASI 2 DARI BIOMASA SAWIT

Maharani Dewi Solikhah, Adi Prismantoko, Adinda Prawitasari, Bina Restituta Barus, Agus Kismanto

Abstract


Indonesia has abundance of biomass that underutilized, including oil palm biomass in such as empty fruit bunches and palm fronds. The biomass can be converted into biohydrocarbons through a pyrolysis process that produces bio-oil and followed by an up-grading process to improve its quality. Upgrading Bio-oil into biohydrocarbons can be conducted through various production processes, including hydrothermal processes. Bio-oil has different chacateristic compared to diesel fuel. Bio-oil has a high water content (11-50%), high acidity, and high viscosity (> 40 cP). Based on these characteristics, the hydrothermal process has the advantage of being able to operate with raw materials that have a high water content. The operating conditions of the hydrothermal process are 300 – 400 oC, 150 – 200 bar. For this reason, a bio-oil upgrading reactor was designed using a hydrothermal process to operate at a temperature of 420 oC and a pressure of up to 220 bar.

Keywords


upgrading bio-oil, reactor design, oil palm biomass

Full Text:

PDF

References


Benanti, E., Freda, C., Lorefice, V., Braccio, G., & Sharma, V. K. (2011). Simulation of olive pits pyrolysis in a rotary kiln plant. Thermal science, 15(1), 145-158.

Bridgwater, A., & Peacocke, G. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1-73.

Cheng, Y. T., Wang, Z., Gilbert, C. J., Fan, W., & Huber, G. W. (2012). Production of p‐xylene from biomass by catalytic fast pyrolysis using ZSM‐5 catalysts with reduced pore openings. Angewandte Chemie International Edition, 51(44), 11097-11100.

de Rezende Pinho, A., de Almeida, M. B., Mendes, F. L., Casavechia, L. C., Talmadge, M. S., Kinchin, C. M., & Chum, H. L. (2017). Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 188, 462-473.

Devendra, C. (1990). Roughage resources for feeding in the ASEAN region. Paper presented at the The First Asean Workshop on Tech Animal Feed Production Utility Food.

do Nascimento, L. A. S., Angélica, R. S., Da Costa, C. E., Zamian, J. R., & da Rocha Filho, G. N. (2011). Comparative study between catalysts for esterification prepared from kaolins. Applied Clay Science, 51(3), 267-273.

Firoozi, M., Baghalha, M., & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 10(12), 1582-1585.

Kang, N. Y., Song, B. S., Lee, C. W., Choi, W. C., Yoon, K. B., & Park, Y.-K. (2009). The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method. Microporous and Mesoporous Materials, 118(1-3), 361-372.

Kausar, H. (2012). Physical, chemical and biological changes during the composting of oil palm frond. African Journal of Microbiology Research, 6(19), 4084-4089.

Kirumakki, S. R., Nagaraju, N., & Narayanan, S. (2004). A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5. Applied Catalysis A: General, 273(1-2), 1-9.

Kokotailo, G. T. (1980). Crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates. In: Google Patents.

Meiga Setyo Winanti, D. M. H. (2011). Pabrik Bio-oil dari Jerami Padi dengan Proses Pirolisis Cepat Teknologi Dynamotive. (Non-Degree Text), Institut Teknologi Sepuluh November, Surabaya. Retrieved from http://digilib.its.ac.id/ITS-NonDegree-3100011044328-/16893 (3100011044328)

Petushkov, A., Yoon, S., & Larsen, S. C. (2011). Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous and Mesoporous Materials, 137(1-3), 92-100.

Prasetyoko, D., Purnamasari, I., & Hartanto, D. (2011). Esterifikasi asam lemak stearin kelapa sawit menggunakan katalis H-ZSM-5 mesopori yang disintesis dengan metode nanoprekursor. Paper presented at the Seminar Nasional Zeolit VII.

Seith, S. M. (2009). Analysis of Bio-Oil from Palm Oil Wastes through Batch Pyrolysis Process. (Bachelor in Chemical Engineering), Malaysia Pahang, Malaysia.

Sitanggang, T. (2018). Indonesia Palm Oil Supply and Demand. Retrieved from Nusa Dua, Bali:

Solikhah, M., Pratiwi, F., Heryana, Y., Wimada, A., Karuana, F., Raksodewanto, A., & Kismanto, A. (2018). Characterization of bio-oil from fast pyrolysis of palm frond and empty fruit bunch. Paper presented at the IOP conference series: Materials science and engineering.

Song, C., Hu, H., Wang, G., & Chen, G. (2000). Liquefaction of biomas with water in sub–and supercritical states. Scientific Research Fund For Doctoral Award Unit.

Sulaiman, N. A. a. F. (2013). The Oil Palm Wastes in Malaysia. In Biomass Now - Sustainable Growth and Use.

Sundaryono, A., Handayani, D., & Budiman, S. W. T. (2015). Perengkahan katalitik metil ester dari minyak limbah cair pabrik minyak kelapa sawit dengan katalis Cr/Mo/HZA dan Ni/Mo/HZA. Journal of Agroindustrial Technology, 25(1).

Vassilev, S., Baxter, D., K. Andersen, L., & G. Vassileva, C. (2010). An overview of the chemical composition of biomass. Fuel, 89, 913-933. doi:10.1016/j.fuel.2009.10.022

Weitkamp, J., & Puppe, L. (2013). Catalysis and zeolites: fundamentals and applications: Springer Science & Business Media.




DOI: https://doi.org/10.24853/jurtek.14.2.197-212

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ