PENGELOMPOKKAN DAERAH BERDASARKAN KETERSEDIAAN MASJID MUHAMMADIYAH DENGAN ALGORITME K-MEANS
Abstract
The importance of the mosque's role in daily life as it is known is for worship facilities. However, the availability of mosques in an area is not yet fully distributed, even there are still areas that do not yet have a mosque. The financial surplus in the Muhammadiyah organization has not been put to good use. One solution is to map and group an area based on the number of mosques in the area. The grouping of regions in this study uses the K-Means algorithm. Characteristics for the process of grouping regions are the name of the district, the name of the sub-district and the number of mosques in a sub-district or branch. The study area in this research is West Java Province. Determination of K or number of clusters in this study is 3. The number of clusters is determined based on 3 categories, namely small, medium and large. There are 4 regions that are categorized with a large number of mosques, 21 regions with moderate numbers and 78 for regions that are classified as few. Evaluation of the results of the grouping showed good results with an SSE value of 90.05%.
Keywords
Full Text:
PDFReferences
Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102–4107. https://doi.org/10.3923/jeasci.2017.4102.4107
Darodjat, D. 2014. Memfungsikan Masjid sebagai Pusat Pendidikan untuk Membentuk Peradaban Islam. ISLAMADINA. 8(2):1-13.
Gerretzen, J., Szymańska, E., Jansen, J. J., Bart, J., Van Manen, H. J., Van Den Heuvel, E. R., & Buydens, L. M. C. (2015). Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Analytical Chemistry, 87(24), 12096–12103. https://doi.org/10.1021/acs.analchem.5b02832
Hasan, M. (2015). Comparison of Euclidean Distance Function and Manhattan Distance Function Using K-Mediods. 13(10), 61–71.
Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253
Pakkana, M. 2017. Kemandirian Keuangan Muhammadiyah [Halaman Web]. Diakses dari https://www.itb-ad.ac.id/2018/04/09/kemandirian-keuangan-muhammadiyah/
PWM Jabar. 2015. AUM Tempat Ibadah [Halaman Web]. Diakses dari http://jabar.muhammadiyah.or.id/content-22-sdet-aum-tempat-ibadah.html
Rahman, A. T., Wiranto, & Rini, A. (2017). Coal Trade Data Clustering Using K-Means (Case Study Pt. Global Bangkit Utama). ITSMART: Jurnal Teknologi Dan Informasi, 6(1), 24–31. https://doi.org/10.20961/ITS.V6I1.11296
Saifudin, A. (2018). Metode Data Mining Untuk Seleksi Calon Mahasiswa. Jurnal Teknologi, 10(1), 25–36.
Saputra, A., & Kusuma, B. M. A. (2017). Revitalisasi Masjid Dalam Dialektika Pelayanan Umat Dan Kawasan Perekonomian Rakyat. Al-Idarah: Jurnal Manajemen Dan Administrasi Islam, 1(1), 1. https://doi.org/10.22373/al-idarah.v1i1.1522
Sukamto, S., Id, I. D., & Angraini, T. R. (2018). Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means. JUITA : Jurnal Informatika, 6(2), 137. https://doi.org/10.30595/juita.v6i2.3172
Sulastri, H., & Gufroni, A. I. (2017). Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(2), 299–305. https://doi.org/10.25077/teknosi.v3i2.2017.299-305
DOI: https://doi.org/10.24853/jurtek.13.1.75-80