ANALISA PEMBENTUKAN FILMWISE MENJADI DROPWISE PADA PENANGKAP UAP JENIS DATAR, SEGITIGA DAN SETENGAH LINGKARAN

Irfan Santosa, Septian Ade Maulana

Abstract


This study aims to determine the formation of filmwise to dropwise, calculate heating heat, calculate the mass of evaporation, calculate the heat transfer coefficient of condensation and the Reynold value. The research method is by varying the shape of the steam catcher and measuring the water temperature (T1), steam temperature in the water heater (T2), steam catcher plate temperature (T3), environmental temperature (T4), taking documentation to see the process of forming filmwise to dropwise. The results showed that heating water required 284,705.42 Joules. Evaporation mass 0.13 kg. The condensation heat transfer coefficient for each of the vapor traps is hdatar = 1.2759 W / m20K, triangle h = 1.0493 W / m20K, h half circle = 1.1095 W / m20K. The Reynolds number is the Re value of the flat steam catcher = 4547487.192, the Re value of the triangular steam catcher = 4088577.645, the Re value of the semi-circular steam catcher = 4323144.511. which means that the steam flow is included in the Turbulent flow.


Keywords


Filmwise, Dropwise Condensation, Steam Capture Variation

Full Text:

PDF

References


Eko Yohanes, Sudjito Soeparman, Eko Siswanto. 2014. Heat Flux Kondensasi pada Media Arang Tempurung Kelapa (Cocos Nurifera). Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya.

J.P. Holman. 1997. Perpindahan Kalor. Penerbit Erlangga, Jakarta.

Kamal, Samsul. 1998. Studi Karakteristik Angka Perpindahan Kalor Permukaan Plat Gelombang Untuk Pengembunan Filmwise. Jurnal Media Teknik No 4 Tahun XX November ISSN : 0216-3012.

Khilmi Afandi. 2014. Studi Experimental Sistem Kondensasi Uap Hasil Evaporasi Pada Sistem Desalinasi Tenaga Matahari. Jurusan Teknik Sistem Perkapalan. Institut Teknologi Surabaya. https://docplayer.info/38650405-Studi-eksperimental-sistem-kondensasi-uap-hasil-evaporasi-pada-sistem-desalinasi-tenaga-matahari.html

M.D.Kulkarni, P .L. Puthani, A.T. Patil. 2015. Study of Dropwise Condensation on Teflon Coated Surface. International Advanced Research Journal in Science, Engineering and Technology Vol 2 Issues 9 ISSN : 2393-8021.

Marieke Ahlers. Alexander Buck Emden. Hans Jorg-Bath, 2019. Is dropwise condensation feasible?A review on surface modifications for continuous dropwise condensation and a profitability analysis. Journal of Advanced Research 16 page 1-13. https://doi.org/10.1016/j.jare.2018.11.004.

M. Herry, Travis. 2011. Heat Transfer Rates for Filmwise Dropwise and Superhydrophobic Condensation on Silicon Substrates. Massachusetts Institute of Technology.

Miljkovic, N.; Enright, R.; Wang, E. N. 2012. Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic anostructured Surfaces. ACS Nano, 6, 1776-1785.

Pandey, Saurabh. 2012. Dropwise and Filmwise Condensation. International Journal of Scientific & Engineering Research Vol 3 Issues 4 ISSN 2229-5518.

Reddy, M. Rama Narasimha, M.Yohan, K.Harshavardhan Reddy. 2012. Heat Transfer Co-Efficient Through Dropwise Condensation and Filmwise Condensation Apparatus. International Journal of Scientific and Research Publications, Volume 2 Issues 2 ISBN : 2250-3153, page 1 s/d 4.

Santosa, Irfan. 2012. Sistem Perpindahan Panas Single Basin Solar Still Dengan Memvariasi Sudut Kemiringan Kaca Penutup. Jurnal Engineering Volume 4, No.1 e-ISSN : 2549-8614, p-ISSN : 2087-3859.

Santosa, Irfan & Mustaqim. 2015. Analisa Filmwise dan Dropwise Hybrid Basin Solar Still. Proseding Seminar Nasional Pangan, Energi dan Lingkungan Universitas Pekalongan. ISBN : 978-602-72221-0-6.




DOI: https://doi.org/10.24853/jurtek.14.1.111-118

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ