ANALISA KINERJA PENGEMBANGAN DESAIN POSISI RUANG BAKAR MIKROTURBIN GAS
Abstract
This research was conducted to develop a gas microturbine design by optimizing the position of the combustion chamber, which changes the position of the combustion chamber from vertical to horizontal and in a single axis with compressor and turbine components. The research method used is to calculate the change in the position of the combustion chamber from a vertical to a horizontal position, and thermodynamic analysis using the Brayton cycle in both ideal and actual conditions. The results of this research can be explained that the new design produces an outlet temperature of the combustion chamber or a gas turbine inlet temperature of 1242 K and a gas turbine outlet temperature of 870 K. This condition results in a thermal efficiency of 27.35%. Changing the position of the combustion chamber to a horizontal position in the development of gas microturbine designs can be concluded that can improve the performance of gas microturbine designs.
Keywords
Full Text:
PDFReferences
Enagi, I. I., Al-attab, K. A. and Zainal, Z. A. 2017.Combustion Chamber Design and Performance for Micro Gas Turbine Application. Fuel Processing Technology, 166 : 258–268. doi: 10.1016/j.fuproc.2017.05.037.
Hermawan, R. et al. 2017. Analisa Perancangan Ruang Bakar Pada Pembangkit Listrik Mikro Turbin Gas Bahan Bakar LPG. in Prosiding Seminar Nasional Sains dan Teknologi. Jakarta, pp. 1–12.
Kusnadi, K. and Taryana, T. 2016. Usulan Waktu Penggantian Optimum Komponen Mesin Gas Engine (Prechamber Gas Valve) Dengan Model Age-Based Replacement di PT. XYZ. Jurnal Teknologi Universitas Muhammadiyah Jakarta, 8(1): 45–52. doi: 10.24853/jurtek.8.1.45-52.
Luthfi, M. et al. 2018. Uji Komposisi Bahan Bakar dan Emisi Pembakaran Pertalite dan Premium. Jurnal Teknologi Universitas Muhammadiyah Jakarta, 10(1): 67–72. doi: 10.24853/jurtek.10.1.67-72.
Mansouri, M. et al. 2014. Micro Gas Turbine Configurations with Carbon Capture-Performance Assessment using a Validated Thermodynamic Model. Applied Thermal Engineering, 73(1): 170–182. doi: 10.1016/j.applthermaleng.2014.07.043.
Mashuri. 2017. Analisa Termodinamika Pembangkit Listrik Mikro Turbin Gas Kapasitas 3 kW. Universitas Pancasila.
Olawale, D. et al. 2020. Evaluation of Emission Indices and Air Quality Implications of Liquefied Petroleum Gas Burners. Heliyon, 6(8):1–6. doi: 10.1016/j.heliyon.2020.e04755.
Rahman, M. and Malmquist, A. 2016. Modeling and Simulation of an Externally Fired Micro-Gas Turbine for Standalone Polygeneration Application. Journal of Engineering for Gas Turbines and Power, 138(11):1–15. doi: 10.1115/1.4033510.
Rosid, R. 2016. Analisa Proses Pembakaran Pada Motor Bensi 113.5 cc Dengan Simulasi ANSYS. Jurnal Teknologi Universitas Muhammadiyah Jakarta, 8(2):89–93. doi: 10.24853/jurtek.8.2.89-93.
Siswantara, A. . et al. 2015. Analisis unjuk kerja sistem turbin gas mikro bioenergi proto x-3 berbahan bakar LPG. in Seminar Nasional Teknik Mesin. Banjarmasin, pp. 1–8.
Vick, M. 2012. High Efficiency Recuperated Ceramic Gas Turbine Engines for Small Unmanned Air Vehicle Propulsion. Imperial College London.
Xiao, G. et al. 2017. Recuperators for Micro Gas Turbines : A Review. Applied Energy, 197: 83–99. doi: 10.1016/j.apenergy.2017.03.095.
Yulianto, B. 2017. Analisa Ruang Bakar Pada Pembangkit Listrik Mikro Turbin Gas Kapasitas 3 kW. Universitas Pancasila.
DOI: https://doi.org/10.24853/jurtek.14.1.39-46
Refbacks
- There are currently no refbacks.