Formulasi Kuat Tekan Perkerasan Landasan Pacu Dari Sampel Acak Terstruktur Transmisi Permukaan Ultrasonik

Heri Khoeri, Wisnu Isvara, Panji Nugroho

Abstract


Landasan pacu (Runway) merupakan salah satu penentu keamanan dan keselamatan operasional bandara, kerusakan perkerasan runway dapat membahayakan operasi penerbangan. Untuk mengetahui daya dukung perkerasan beton bertulang, maka kuat tekan beton menjadi hal penting untuk diperiksa. Uji tekan pada sampel beton inti merupakan cara yang paling akurat untuk menentukan kuat tekan beton, namun waktu yang tersedia untuk pemeriksaan pada runway sangat terbatas, sehingga pengujian tidak merusak (Non destructive test, NDT) dengan uji cepat rambat gelombang ultrasonik (ultrasonic pulse velocity test, UPVT) dan uji palu pantul (Rebound Hammer test, RHT) menjadi alternatif pilihan. Pada landasan pacu pengujian ultrasonik yang memungkinkan adalah dengan metode transmisi langsung (indirect transmission method, ITM) atau metode transmisi permukaan (surface transmission method), yang dalam banyak penelitian menunjukkan nilai akurasi yang lebih rendah dibandingkan dengan direct transmission method (DTM). Penelitian dilakukan dengan sampel acak terstruktur 1245 data RHT di sepanjang runway 3645 m, 45 pengukuran DTM dan 15 uji sampel beton inti. Hasil pengujian menunjukkan ada hubungan kuat antara hasil RHT dengan ITM, ditemukan korelasi rendah antara ITM dengan kuat tekan beton, , dan tidak ada hubungan antara ITM dan .  Namun secara bersama-sama ITM dan RHT menunjukkan korelasi yang kuat dengan fc’, dimana dengan faktor determinasi.


Keywords


asesmen, beton, palu, permukaan, uji, ultrasonik

Full Text:

PDF

References


S. Silvia, L. B. Suparma, and S. H. T. Utomo, “Analisis Pengembangan Geometrik Run-way Bandar Udara Fatmawati Soekarno Kota Bengkulu,” Journal of Civil Engineer-ing and Planning, vol. 2, no. 2, p. 120, Dec. 2021, doi: 10.37253/jcep.v2i2.5201.

T. Amanah, “The Pavement Condition In-dex Functional Evaluation of Runway Pavement Used Pavement Condition Index (PCI) Method (Case Study : Fatmawati Soekarno Airport Provinsi Bengkulu),” Journal of Civil Engineering and Planning, vol. 4, no. 1, pp. 14–25, Jun. 2023, doi: 10.37253/jcep.v4i1.7660.

S. Alaswad and Y. Xiang, “A review on con-dition-based maintenance optimization models for stochastically deteriorating system,” Reliab Eng Syst Saf, vol. 157, pp. 54–63, Jan. 2017, doi: 10.1016/j.ress.2016.08.009.

L. Yang, X. Ma, and Y. Zhao, “A condition-based maintenance model for a three-state system subject to degradation and envi-ronmental shocks,” Comput Ind Eng, vol. 105, pp. 210–222, Mar. 2017, doi: 10.1016/j.cie.2017.01.012.

Direktur Jenderal Perhubungan Udara, Peraturan Direktur Jenderal Perhubungan Udara Nomor SKEP/78/VI/2005, Petun-juk Pelaksanaan Pemeliharaan Konstruksi Landas Pacu (runway), Landas Hubung (taxiway), Dan Landas Parkir (apron) Serta Fasilitas Penunjang Di Bandar Udara. 2005.

Direktur Jenderal Perhubungan Udara, Standar Teknis dan Operasi Peraturan Keselamatan Penerbangan Sipil – Bagian 139 (Manual Of Standard CASR – Part 139), Volume I Bandar Udara (Aero-dromes). Indonesia, 2015.

L. Wahidah, R. Ligina Ayu, and E. Wiyono, “Analisis Kerusakan dan Perbaikan Landas Pacu Bandar Udara dengan Metode PCI,” 2021.

M. R. Garcez, A. B. Rohden, and L. G. Graupner de Godoy, “The role of concrete compressive strength on the service life and life cycle of a RC structure: Case study,” J Clean Prod, vol. 172, pp. 27–38, Jan. 2018, doi: 10.1016/j.jclepro.2017.10.153.

F. Ridho and H. Khoeri, “Perbandingan Mu-tu Beton Hasil Upvt Metode Indirect Ter-hadap Mutu Beton Hasil Hammer Test dan Core Drill,” Konstruksia, vol. 6, no. 2, 2015, doi: 10.24853/jk.6.2.%p.

M. Jedidi, “Evaluation of the Quality of Concrete Structures by the Rebound Hammer Method,” Current Trends in Civil & Structural Engineering, vol. 5, no. 5, 2020, doi: 10.33552/CTCSE.2020.05.000621.

H. Khoeri, G. A. Putra, and N. R. Rizqullah, “Pengaruh Tingkat Karbonasi Terhadap Kuat Tekan Beton Pada Asesmen Struktur Gedung Eksisting,” Rancang Bangun, vol. 10, no. 1, pp. 1–9, 2024.

H. R. Kumavat, N. R. Chandak, and I. T. Patil, “Factors influencing the performance of rebound hammer used for non-destructive testing of concrete members: A review,” Case Studies in Construction Materials, vol. 14, p. e00491, Jun. 2021, doi: 10.1016/j.cscm.2021.e00491.

D. M. Zárate, F. Cárdenas, E. F. Forero, and F. O. Peña, “Strength of Concrete through Ultrasonic Pulse Velocity and Uniaxial Compressive Strength,” International Journal of Technology, vol. 13, no. 1, pp. 103–114, 2022, doi: 10.14716/ijtech.v13i1.4819.

American Concrete Institute., ACI 228.2R-13 Report on nondestructive test methods for evaluation of concrete in structures. American Concrete Institute, 2013.

B. A. Herki, J. Khatib, Z. Ramadhan, and B. Hamadameen, “Condition Assessment Of Building Concrete Structures Using NDTs – Case Study,” International Conference on Recent Academic Studies, vol. 1, pp. 158–171, May 2023, doi: 10.59287/icras.690.

Y. Choi, J. W. Kang, T. Y. Hwang, and C. G. Cho, “Evaluation of residual strength with ultrasonic pulse velocity relationship for concrete exposed to high temperatures,” Advances in Mechanical Engineering, vol. 13, no. 9, 2021, doi: 10.1177/16878140211034992.

S. Hong, S. Yoon, J. Kim, C. Lee, S. Kim, and Y. Lee, “Evaluation of Condition of Con-crete Structures Using Ultrasonic Pulse Velocity Method,” Applied Sciences, vol. 10, no. 2, p. 706, Jan. 2020, doi: 10.3390/app10020706.

N. Handika, B. F. Norita, E. Tjahjono, and E. Arijoeni, “Experimental Studies on the Homogeneity and Compressive Strength Prediction of Recycled Aggregate Con-crete (RAC) Using Ultrasonic Pulse Veloci-ty (UPV),” CSID Journal of Infrastructure Development, vol. 3, no. 2, p. 117, Dec. 2020, doi: 10.32783/csid-jid.v3i2.111.

H. Khoeri, “Non-Destructive Test Terhadap Semi Destructive Test pada Shear Wall Beton Bertulang,” Konstruksia, vol. 7, no. 2, Apr. 2016, doi: https://doi.org/10.24853/jk.7.2.%25p.

British Standards Institution, BS 1881-203:1986; Testing concrete - Recommen-dations for measurement of velocity of ul-trasonic pulses in concrete, BSI. British Standards Institution, 2004.

F. Ma’arif, I. Yasin, and Z. F. Haza, “Studi Eksperimen Non-Destructive Test dengan Metode Semi-Direct pada Beton,” vol. 18, no. 1, 2022, doi: 10.21831/inersia.v18i1.

M. Andi, Baehaki, and D. A. Khadafi, “Cor-relation of reinforcement concrete quality based on variations in UPV testing meth-ods,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2019. doi: 10.1088/1757-899X/673/1/012043.

H. M. Najm, O. Nanayakkara, and M. M. S. Sabri, “Destructive and Non-Destructive Evaluation of Fibre-Reinforced Concrete: A Comprehensive Study of Mechanical Properties,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/ma15134432.

A. M. I. Said and B. A. H. Ali, “Assessment of Concrete Compressive Strength by Ultra-sonic Non-Destructive Test,” in E3S Web of Conferences, EDP Sciences, Nov. 2021. doi: 10.1051/e3sconf/202131803004.

F. Surya Herlambang and Y. Setyono, “Comparison Of Ultrasonic Pulse Velocity Test Results With and Without Using Transducer Stabilizer.”

BSN, SNI ASTM C805:2012, Metode uji angka pantul beton keras. Jakarta, Indo-nesia: Badan Standarisasi Nasional, 2012. [Online]. Available: www.bsn.go.id

ACI, ACI 228.1R-19 Report on Methods for Estimating In-Place Concrete Strength. American Concrete Institute, 2019.

IAEA, Guidebook on non-destructive test-ing of concrete structures. Vienna: Interna-tional Atomic Energy Agency, 2002.




DOI: https://doi.org/10.24853/jk.16.1.131-141

Refbacks

  • There are currently no refbacks.


Jurnal Konstruksia Indexing By:

    


Copyright of Jurnal Konstruksia (e-ISSN:2443-308X, p-ISSN:2086-7352).

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Powered by Puskom-UMJ