

Oktober 2019 ISSN: 2252 - 7311 e-ISSN: 2549 - 6840

Website: jurnal.umj.ac.id/index.php/konversi

Email: jurnalkonversi@umj.ac.id

UJI KINERJA ADSORPSI ION NIKEL DENGAN KARBON BERPORI DARI SERBUK GERGAJI KAYU MLANDING (PETAI CINA) YANG TELAH DIOKSIDASI DENGAN HIDROGEN

Chici Wardiani Prasongko^{1*}, Teguh Ariyanto² dan Chandra Wahyu Purnomo³ ¹Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada

Jalan Grafika No. 2 Kampus UGM, Yogyakarta, 55281 ²Material and Sustainable Mineral Processing Research Group, Universitas Gadjah Mada,

> Yoqyakarta, 55281 ³Pusat Inovasi Agroteknologi, PIAT UGM, Berbah Sleman, Yogyakarta *email: chici.wardiani.p@mail.ugm.ac.id

ABSTRAK. Penelitian ini dilakukan untuk mempelajari perubahan gugus fungsi dari karbon berpori yang disintesis dari serbuk gergaji kayu mlanding atau petai cina setelah dioksidasi dengan H₂O₂ pada variasi suhu 30°C, 60°C, dan 80°C. Selain itu, penelitian ini juga dilakukan untuk mempelajari pengaruh karbon berpori setelah dioksidasi terhadap adsorpsi ion nikel. Percobaan adsorpsi dilakukan dengan menggunakan larutan Hexammine Nickel (II) Nitrate [Ni(NH₃)₆](NO₃)₂ yang disintesis dengan cara menambahkan Nickel (II) Nitrat Heksahidrat (>99,9%, Merck) ke larutan Ammonia (25wt%, Merck). Larutan nikel digoyang selama 48 jam dengan menggunakan shaker waterbath pada variasi suhu yaitu 30°C, 40°C, dan 60°C. Hasil penelitian ini menunjukkan bahwa oksidasi karbon berpori akan meningkatkan gugus fungsi dalam karbon berpori seperti lakton, karboksil, dan fenol. Untuk adsorpsi ion nikel oleh karbon berpori dari serbuk kayu mlanding mengikuti pola isotherm Langmuir dan menunjukkan kinerja yang lebih baik untuk menjerap ion nikel dalam larutan dibandingkan dengan karbon yang tidak teroksidasi.

Kata kunci: Serbuk kayu mlanding, karbon berpori, oksidasi, adsorpsi, ion nikel.

ABSTRACT. This research was conducted to study changes in functional groups from porous carbon synthesized from mlanding or petai sawdust after being oxidized with H₂O₂ at variations in temperatures of 30°C, 60°C, and 80°C. In addition, this research was also carried out to study the effect of porous carbon after oxidation of nickel ion adsorption. Adsorption experiments were carried out using a solution of Hexammine Nickel (II) Nitrate [Ni(NH₃)₆](NO₃)₂ synthesized by adding Nickel (II) Nitrat Heksahidrat (>99,9%, Merck) to Ammonia solution (25wt%, Merck). The nickel solution was shaken for 48 hours using a water bath shaker at a temperature variation of 30°C, 40°C, and 60°C. The results of this study indicate that the oxidation of porous carbon will increase functional groups in porous carbon such as lactone, carboxyl, and phenol. For the adsorption of nickel ions by porous carbon from mlanding wood follows the Langmuir isotherm plot and shows better performance for absorbing nickel ions in solution compared to carbon that is not oxidized.

Keywords: Mlanding wood, porous carbon, oxidation, adsorption, nickel ion.

PENDAHULUAN

Seiring dengan pesatnya perkembangan teknologi industry menyebabkan adanya dan polusi pencemaran air yang biasa disebut sebagai polutan. Berbagai upaya untuk meminimalisir bahaya polutan dilakukan untuk mengurangi efek berbahaya bagi lingkungan dan mahkluk hidup. Logam berat yang sukar terurai jika terakumulasi terus menerus menyebabkan bahaya bila terkontaminasi dengan air karena sifatnya yang sangat toksik. Sifat inilah yang menyebabkan keracunan secara akut dan kronis bahkan dapat menyebabkan kematian karena terakumulasi di dalam jaringan tubuh mahkluk hidup (Adiningtyas dan Mulyono, 2016).

Nikel (Ni) termasuk logam berat yang berbahaya. Nikel umumnya digunakan dalam pelapisan logam. Konsentrasi dalam air limbah industri bervariasi antara 6-12 mg/L, sedangkan batas aman konsentrasi nikel dalam air yaitu 1 mg/L (Miaratiska dan Azizah, 2015). Hal ini berarti bahwa konsentrasi nikel dalam air limbah diatas batas aman dan dapat menyebabkan masalah pencemaran air bagi lingkungan.

Banyak metode yang telah digunakan untuk pengolahan air yang mengandung logam berat seperti proses elektrokimia (Zeppenfeld, 2011), reaksi berkatalis enzim (Arugula et al, 2012), membran mikrofiltrasi dan nanofiltrasi (Widyasmara et al., 2013), elektrodialisis (Kabay et al, 2002), pertukaran ion (Kardjono, 2007), dan pengolahan air dengan menggunakan lumpur aktif. Namun, penggunaan metode-metode ini memerlukan biaya yang tinggi untuk instalasi, operasi, dan pemeliharaannya (Rolence, 2014). Selain itu, pengolahan air dengan menggunakan kimia seperti koagulasi dan bahan klorinasi dapat menghasilkan produk dan residu dalam jumlah besar meningkatkan biaya pengolahannya. Hal ini dapat menyebabkan residu yang dihasilkan berkembang menjadi sumber sekunder yang juga dapat mencemari lingkungan (Hasan dan Budi, 2015).

Adsorpsi merupakan proses fisikkimiawi dimana adsorbat yaitu pencemar, terakumulasi di permukaan padatan yang disebut adsorben (Priadi et al, 2014). Proses adsorpsi dipilih karena adsorpsi merupakan proses pemisahan kesetimbangan dan metode yang efektif untuk aplikasi proses dekontaminasi air (Dabrowski, 2001). Adsorpsi merupakan metode yang lebih unggul daripada metode lain untuk proses re-use of water dari segi biaya awal, fleksibilitas, simplisitas desain, dan pengoprasiannya yang mudah serta tidak bersifat beracun

(Crini, 2006). Adsorpsi dengan menggunakan karbon berpori adalah salah satu metode utama yang dapat digunakan untuk pengolahan air limbah terkontaminasi logam berat.

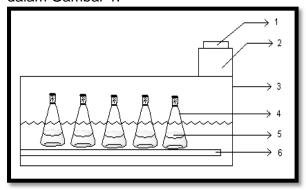
Karbon berpori dapat dibuat dari berbagai bahan yang mengandung karbon baik bahan polimer alam dan sintesis (Rumidatul, 2006). Karbon komersial biasanya terbuat dari bahan alam melalui proses pirolisis. Salah satu karbon berpori komersial yang banyak digunakan yaitu dari tempurung kelapa (coconut shell) yang tersedia secara komersil di pasaran. Selain itu karbon berpori yang dihasilkan dari arang tempurung kelapa memiliki mikropori yang banyak, luas permukaan besar, dan daya adsorpsi yang cukup tinggi (Adiningtyas dan Mulyono, 2016).

Salah satu bahan yang potensial untuk dikonversi menjadi karbon adalah karbon dari sebuk gergaji kayu mlanding atau petai cina. Pohon mlanding dapat tumbuh di segala macam tanah kecuali tanah lempung dan tergenang air (Praja and Oktarlina, 2016). Karbon berpori dari kayu mlanding memiliki sifat mesopori sehingga kemungkinan bagus untuk proses adsorpsi ion yang cenderung memiliki molekul besar dalam bentuk terhidrat.

Kemampuan adsorpsi karbon berpori tidak hanya ditentukan oleh porositas yakni luas permukaan maupun distribusi ukuran pori, tetapi juga ditentukan oleh gugus-gugus fungsi permukaan suatu karbon berpori. Porositas karbon berpori berpengaruh pada kapasitas adsorpsi sedangkan gugus fungsi permukaan pada interaksi berpengaruh dengan kepolaran adsorbat. Gugus fungsi pada permukaan karbon berpori tidak hanya dapat diidentifikasi ataupun secara kuantitas, melainkan gugus fungsi ini juga dapat dimodifikasi. Modifikasi gugus fungsi dapat dilakukan secara selektif untuk menghilangkan beberapa gugus fungsi tertentu dan sebaliknya untuk memasukkan gugus fungsi baru. Menurut studi yang telah dilakukan, performa adsorpsi karbon aktif dapat ditingkatkan 30-50% dengan cara memodifikasi gugus fungsi dan luas permukaan karbon. Salah satu cara

modifikasi yakni dengan melakukan oksidasi terhadap karbon berpori (Setyadhi et al., 2005).

Pada penelitian karbon ini. dimodifikasi dengan cara oksidasi pada berbagai suhu untuk meningkatkan performa adsorpsi. Bahan yang diguanakan sebagai oksidator adalah hidrogen peroksida.


METODOLOGI PENELITIAN

Bahan Penelitian

Bahan yang digunakan dalam penelitian ini adalah Hexammine Nickel Nitrate $[Ni(NH_3)_6](NO_3)_2$ yang digunakan sebagai adsorbat disintesis dengan cara menambahkan Nickel (II) Nitrat Heksahidrat (>99,9%, Merck) ke larutan Ammonia (25wt%, Merck). Karbon berpori yang digunakan sebagai adsorbat yaitu tempurung kelapa dan kayu mlanding diperoleh dari pirolisis bahan di Laboratorium Polimer Tinggi, Departemen Teknik Kimia. UGM kemudian dioksidasi dengan Hidrogen Peroksida (30 wt%).

Alat Penelitian

Rangkaian alat penelitian ditunjukkan dalam Gambar 1.

Keterangan:

- 1. Tombol pengatur suhu
- 2. Thermostat
- 3. Waterbath
- 4. Erlenmeyer 100 ml
- 5. Larutan sampel
- 6. Shaker

Gambar 1. Rangkaian Alat Penelitian

Metode Penelitian

a. Oksidasi Karbon Berpori

Sebanyak 1 gram dari tiap karbon berpori dimasukkan ke dalam labu leher tiga yang berisi 50 ml larutan H₂O₂. Labu leher tiga tersebut kemudian dimasukkan kedalam *oilbath* vang telah diatur suhunya 30°C lalu didiamkan selama 3 jam. Karbon dalam larutan disaring dengan kertas whatman42 setelah saring dioksidasi, kemudian dilakukan pencucian dengan aquadest hangat. Karbon yang telah dicuci lalu dikeringkan dalam oven selama 2 hari pada suhu dibawah 70°C. Karbon berpori vang sudah dioksidasi kemudian dihancurkan dan diayak menjadi ukuran 30 mesh.

b. Adsorpsi Nikel

Percobaan adsorpsi dilakukan pada suhu kamar dengan menggunakan larutan Hexammine Nickel (II)Nitrate $[Ni(NH_3)_6](NO_3)_2$ yang disintesis dengan cara menambahkan Nickel (II) Nitrat Heksahidrat (>99,9%, Merck) ke larutan (25wt%, Merck). Ammonia disesuaikan dengan konsentrasi nikel 0,1-12 mg cm⁻³ dan nilai pH sekitar 12,5. Untuk percobaan adsorpsi, 0,2 g karbon kering ditambahkan kedalam erlenmeyer yang mengandung 50 ml larutan nikel kemudian digoyang selama 48 dengan menggunakan alat shaker pada variasi suhu yaitu 30°C, 40°C, dan 60°C di waterbath. Setelah percobaan selesai, larutan diambil sebanyak 2 mL untuk diukur nilai konsentrasi larutan tersebut. Konsentrasi Hexammine Nickel (II) Nitrate [Ni(NH₃)₆](NO₃)₂ dalam larutan diukur dengan menggunkanan UV-Vis Spectrophotometer Shimadzu UV Mini 1240, diukur pada panjang gelombang 571 nm.

Metode Analisa

Karbon berpori baik sebelum dan sesudah proses oksidasi dianalisis secara kualitatif dan kuantitatif. Adapun analisis kualitatif dilakukan dengan menggunakan Fourier-Transform Infrared Spectroscopy (FTIR) Nicolet iS10 (Thermo Scientific USA), Surface Area Analyzer (SAA) Quantachrome Nova 2000 dengan metode nitrogen sorpsi dan Scanning Electron Microscope (SEM) JSM-6510LA,

sementara analisis kuantitatif dilakukan dengan metode Titrasi Boehm.

Titrasi Boehm dilakukan dengan cara merendam MAC dalam larutan Na2CO3 0,001 N selama 24 jam. Dengan cara yang sama dilakukan untuk larutan Na2HCO3 0,001 N, NaOH 0,001 N dan HCI 0,001 N. MAC kemudian dipisahkan dari larutan. Larutan Na2CO3, Na2HCO3, dan NaOH hasil pemisahan dititrasi balik dengan larutan HCI 0,001 N dan larutan HCI hasil pemisahan dititrasi balik dengan larutan NaOH 0,001 N. Percobaan diulangi dengan menggunakan karbon mlanding yang telah dioksidasi pada suhu 30°C, 60°C dan 80°C.

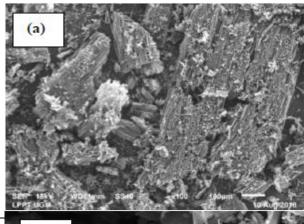
HASIL PENELITIAN DAN PEMBAHASAN

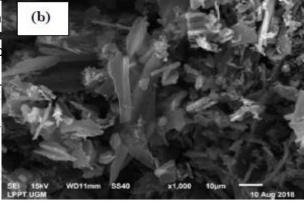
Berdasarkan penelitian yang telah dilakukan, diperoleh berbagai data hasil sehingga dapat diketahui karakteristik bahan beserta struktur porinya, kemudian diperoleh juga data karakteristik gugus bahan serta performa adsorpsi ion nikel.

a. Karakteristik Karbon Berpori

Karbon berpori dari kayu mlanding baik sebelum dan setelah dioksidasi, dianalisis *specific surface area* (SSA) menggunakan metode nitrogen sorpsi. Tabel 1 menunjukkan parameter pori dari karbon.

Tabel 1. Hasil analisis luas permukaan dengan metode nitrogen sorpsi

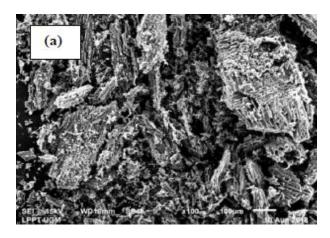

Jenis Karbon	SSA m²/g	Volum e Pori Total, cm ³ /g	Persentase SSA mikropori, %	Perser volu mikrop %
MAC	555	0.91	15	62
MAC 30°C	456	0.50	48	57
MAC 60°C	792	0.54	78	52
MAC 80°C	362	0.28	70	39

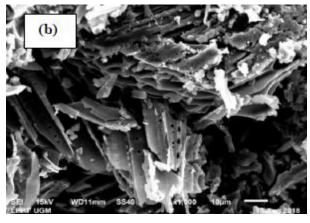

Dari hasil analisis dapat dilihat bahwa SSA dan persentase SSA mikropori

karbon berpori dari kayu mlanding sebelum dan setelah oksidasi pada suhu 60°C mengalami kenaikan. Sementara itu, luas permukaan akan turun dibandingkan sebelum oksidasi ketika oksidasi dilakukan pada suhu 80°C. Struktur mikropori dari MAC meningkat dikarenakan pembukaan pori baru setelah proses oksidasi sehingga menimbulkan luas permukaan spesifik yang lebih besar dan meningkatkan porositas (Liu et al., 2017). Akan tetapi oksidasi pada suhu yang terlalu tinggi akan merusak atau menghancurkan struktur makro dari MAC.

Sementara itu volum pori total dan presentase volum mesopori akan terus berkurang seiring kenaikan suhu oksidasi. Hal ini menunjukkan bahwa semakin tinggi suhu oksidasi maka MAC akan semakin rapuh atau hancur.

Gambar 2 dan 3 menunjukkan struktur mikro MAC menggunakan *Scanning Electron Microscope* (SEM).

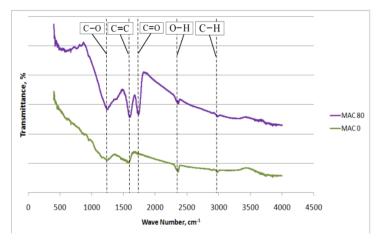




Gambar 2. Hasil analisis struktur mikro MAC sebelum oksidasi dengan SEM(a) perbesaran 100x (b) perbesaran 1000x

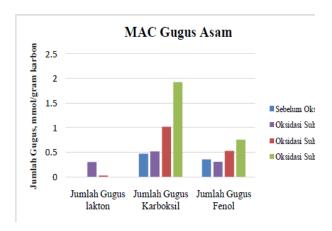
(Chici Wardiani Prasongko, Teguh Ariyanto dan Chandra Wahyu Purnomo)

Dari Gambar 2, dapat dilihat gambar struktur mikro pada permukaan MAC sebelum di oksidasi. Pada perbesaran 100x, terlihat permukaan karbon cukup kasar. Sedangkan pada perbesaran 1000x, butiran-butiran kecilnya tampak cukup halus dan tidak terlihat adanya *void*.

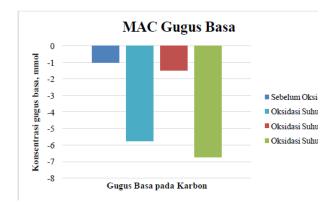


Gambar 3. Hasil analisis struktur mikro MAC setelah oksidasi suhu 800C dengan SEM (a) perbesaran 100x (b) perbesaran 1000x

Dari Gambar 3, dapat dilihat gambar struktur mikro pada permukaan MAC yang telah dioksidasi pada suhu 80°C. Pada perbesaran 100x, terlihat permukaan karbon menjadi semakin kasar dan terlihat semakin hancur. Sedangkan perbesaran 1000x, butiran-butiran halus namun kecilnya masih cukup terdapat banyak void yang muncul. Dibandingkan dengan MAC permukaan MAC 80 tampak kasar dan tidak beraturan. Struktur porinya hancur, dan porositas meningkat. Hal disebabkan oleh efek dari peroksida di pori-pori internal MAC akan mengoksidasi dinding karbon dan menyebabkan peningkatan ukuran pori.


b. Karakteristik Gugus Fungsi yang Dihasilkan

MAC dianalisis karakter gugusnya secara kualitatif dan kuantitatif. Secara kulitatif, MAC dianalisis dengan menggunakan Fourier-Transform Infrared Spectroscopy (FTIR). Gambar 4 menunjukkan analisis gugus fungsi MAC dengan FTIR.


Gambar 4. Hasil analisis gugus fungsi MAC sebelum dan sesudah oksidasi suhu 80°C dengan FTIR

Dari Gambar 4, pada karbon sebelum dan sesudah oksidasi suhu 80°C ada gugus [C-O] tampak dari wave number sekitar 1300 cm⁻¹, ada gugus [C=C] tampak dari wave number sekitar 1600 cm⁻¹, ada gugus [O-H] tampak dari wave number sekitar 2400 cm⁻¹, dan ada gugus [C-H] tampak dari wave number sekitar 3000 cm⁻¹. Sementara itu pada karbon setelah oksidasi pada suhu 80°C, timbul puncak baru pada wave number sekitar 1700 cm⁻¹, hal ini menunjukkan bahwa setelah oksidasi muncul gugus [C=O]. Dari Gambar 4 juga dapat dilihat bahwa sebelum oksidasi karbon telah mempunyai gugus [C=O] dan [OH], hal tersebut dapat dimengerti karena MAC berasal dari biomassa yang berupa selulosa dan banyak mengandung unsur oksigen.

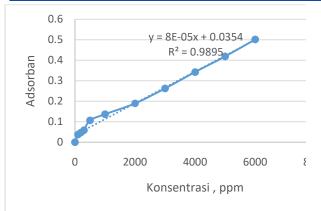
Gambar 5. Hasil analisis gugus asam MAC sebelum dan sesudah oksidasi suhu 30°C, 60°C, dan 80°C dengan metode Titrasi Boehm

Dari Gambar 5, secara jelas terlihat bahwa ada perubahan jumlah gugus baik lakton, karboksil maupun fenol akibat adanya oksidasi pada MAC. Gugus lakton hanya bertambah sedikit pada oksidasi di suhu 30°C dan 60°C, sementara pada suhu 80°C tidak ada pengaruh sama sekali. Hal ini disebabkan karena oksidasi pada suhu tinggi memiliki kecenderungan menghasilkan gugus karboksil. Terlihat pada oksidasi 80°C gugus karboksil mengalami kenaikan sangat signifikan. Selanjutnya, untuk gugus fenol juga semakin bertambah ketika suhu oksidasi dinaikkan, akan tetapi turun pada oksidasi suhu 30°C.

Gambar 6. Hasil analisis gugus basa pada MAC sebelum dan sesudah oksidasi suhu 30°C, 60°C, dan 80°C dengan metode Titrasi Boehm

Dari Gambar 6, secara jelas terlihat bahwa ada perubahan jumlah gugus basa

akibat adanya oksidasi pada MAC. Gugus basa pada MAC akan semakin berkurang jika MAC dioksidasi. Pengurangan paling signifikan ketika dioksidasi pada suhu 80°C. Hal ini terjadi akibat gugus basa akan berubah menjadi gugus asam setelah dilakukan oksidasi. Oleh karena itu, oksidasi akan menambah jumlah gugus asam dan akan menurunkan jumlah gugus basa pada MAC.


c. Penentuan Kurva Kalibrasi

kalibrasi Pembuatan kurva ini dimaksudkan untuk hubungan antara adsorban (y) dan konsentrasi larutan ion nikel (x) yang nantinya akan memberikan suatu nilai persamaan garis linear. Tabel 2 menunjukkan data percobaan kurva kalibrasi konsentrasi larutan ion nikel absorbansi terhadap pada panjang gelombang 571 nm.

Tabel 2. Data hasil percobaan pembuatan kurva kalibrasi adsorpsi ion nikel

Konsentrasi, ppm	Absorbansi
0	0
100	0.0373
200	0.0473
300	0.0585
500	0.1067
1000	0.1365
2000	0.1893
3000	0.2623
4000	0.3423
5000	0.4185
6000	0.5011

Dari data diatas dibuatlah grafik kurva kalibrasi yang nantinya akan digunakan untuk mencari konsentrasi ion nikel dalam cairan setelah diadsorpsi. Kurva kalibrasi dapat dilihat pada gambar berikut:

Gambar 7. Kurva Kalibrasi Ion Nikel

Dari Gambar 7 diatas didapatkan nilai persamaan garis yaitu y = 0.00008x+0.0354 dengan nilai korelasi (R^2) = 0.9895. Persamaan ini digunakan untuk penentuan konsentrasi larutan ion nikel yang akan diadsorpsi oleh serbuk kayu Mlanding (MAC) pada berbagai suhu.

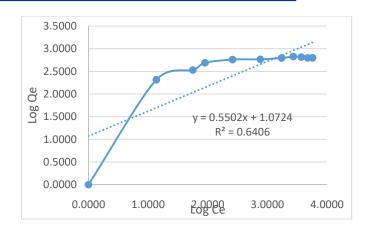
d. Peforma Adsorpsi Ion Nikel

Berdasarkan penelitian yang telah dilakukan, diperoleh berbagai data hasil sehingga dapat diketahui profil adsorpsi ion nikel oleh MAC sebagai fungsi konsentrasi. Distribusi kation logam berat pada saat kesetimbangan dalam adsorben dan larutan sangat penting untuk menentukan kapasitas adsorpsi maksimum. Beberapa model isotherm dapat digunakan untuk mendiskripsikan distribusi adsorpsi pada saat kesetimbangan. Model isotherm Freudlich dan Langmuir merupakan model isotherm vang sering digunakan untuk memahami sistem adsorpsi.

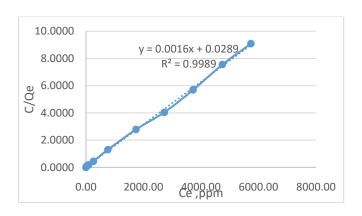
Dari data yang diperoleh penelitian dapat ditentukan model kesetimbangan yang paling sesuai untuk adsorpsi ion nikel. Hasil percobaan terhadap adsorpsi ion nikel diperoleh konstanta-konstanta kesetimbangan dengan menggunakan dua buah model tersebut. Dari tabel 3 sampai menunjukkan hasil R-square dan nilai konstanta-konstanta berbagai model adsorpsi ion nikel pada berbagai variasi suhu proses adsorpsi.

Tabel 3. Nilai konstanta berbagai model terhadap adsorpsi ion Nikel pada suhu 30°C

	Langmuir			Freudlich		
Mater ial	K, L/ mo I	Qm, mg adsor bat/g adsor ben	R- Squ are	K, mg adsor bat/g adsor ben	n	R- Squ are
MAC	0,0 12	588,2 3	0,9 957	4,17	2, 3 9	0,4 668
MAC terok sidasi	0,0 13	769,2 3	0,9 894	5,22	2, 6 3	0,4 298
CSA C	0,0 03	588,2 3	0,9 897	2,79	1, 2	0,6 926
CSA C terok sidasi	0,0 55	625	0,9 989	2,64	1, 8 3	0,6 406


Tabel 4. Nilai konstanta berbagai model terhadap adsorpsi ion Nikel pada suhu 40°C

	Langmuir			Freudlich		
Mater ial	K, L/ mo I	Qm, mg adsor bat/g adsor ben	R- Squ are	K, mg adsor bat/g adsor ben	n	R- Squ are
MAC	0,0 2	504	0,9 997	2,36	1, 7 4	0,7 08
MAC terok sidasi	0,0 07	769,2 3	0,9 894	3,72	2, 1 3	0,4 298
CSA C	0,0 01	500	0,9 487	2,03	6, 7 3	0,6 733
CSA C terok sidasi	0,0 08	555,5 6	0,9 928	2,64	1, 8 3	0,6 641


Tabel 5. Nilai konstanta berbagai model terhadap adsorpsi ion Nikel pada suhu 60°C

	Langmuir			Freudlich		
Mater ial	K, L/ mo I	Qm, mg adsor bat/g adsor ben	R- Squ are	K, mg adsor bat/g adsor ben	n	R- Squ are
MAC	0,0 03	322,5 8	0,9 914	1,54	1, 6 4	0,8 792
MAC terok sidasi	0,0 04	625	0,9 919	1,63	1, 4 5	0,8 685
CSA C	0,0 03	196,0 8	0,9 903	1,28	1, 6 9	0,9 394
CSA C terok sidasi	0,0 06	344,8 3	0.9 975	1,72	1, 6 8	0,8 3

Menurut Kundari & Wivuniati (2008). untuk menentukan apakah data hasil mengikuti percobaan model kesetimbangan Langmuir atau Freudlich, maka dapat ditentukan dari nilai koefisien relasi (R²). Jika pada plot data kurva linear nilai R² mendekati 1, maka data model percobaan mengikuti kesetimbangan tersebut. Dari Tabel 3 sampai 5 diatas menunjukkan bahwa adsorpsi pada umumnya vang berlangsung mempunyai nilai korelasi (R²) cukup tinggi untuk persamaan Langmuir. Plot data hasil percobaan, menunjukkan bahwa nilai R² mendekati 1 untuk model kesetimbangan Langmuir, artinya bahwa proses adsorpsi pada percobaan ini terjadi pada daerah homogen yang spesifik pada adsorben yaitu pada lapisan antarmuka (interface layer) antara adsorbat yaitu larutan ion nikel dan padatan adsorben dalam hal ini yaitu serbuk kayu mlanding (MAC) atau proses adsorpsi ini bisa disebut dengan monolayer adsorption. Pada Gambar 8 dan Gambar 9 dibawah ini berturut-turut ditampilkan salah satu grafik isotherm Freudlich plot dan Langmuir pada proses adsorpsi suhu 30°C.

Gambar 8. Plot Isoterm Freudlich Adsorpsi Ion Nikel dengan MAC pada suhu 30°C

Gambar 8. Plot Isoterm Langmuir Adsorpsi Ion Nikel dengan MAC pada suhu 30°C

KESIMPULAN DAN SARAN

Kesimpulan

Kesimpulan yang dapat diambil dari penelitian ini adalah:

- Pengaruh oksidasi dengan H₂O₂ terhadap karbon berpori dari serbuk kayu mlanding (MAC) ternyata dapat memodifikasi struktur pori dan gugus fungsi dari karbon. Didapat luas permukaan terbesar dari MAC yang telah dioksidasi pada berbagai variasi suhu yaitu pada suhu 60°C dengan SSA sebesar 792 m²/g.
- Semakin tinggi suhu oksidasi maka jumlah gugus asam terbentuk semakin banyak, dalam penelitian ini pada suhu 80°C.

- Semakin tinggi suhu oksidasi akan menyebabkan karbon hancur atau cepat rusak dan dapat menurunkan luas permukaan.
- 4. Setelah dilakukan oksidasi pada berpori menyebabkan karbon performa adsorpsi ion nikel semakin meningkat. Adsorpsi terbanyak pada studi ini yaitu adsorpsi ion Nikel pada suhu 30°C yakni sebesar 769,23 mg adsorbat/g adsorben dengan menggunakaan MAC yang telah dioksidasi.

Saran

Perlu dilakukannya studi lebih lanjut mengenai kinerja dari karbon berpori serbuk kayu mlanding karena belum banyak studi yang menggunakan karbon berpori jenis ini untuk penjerapan logam berat.

DAFTAR PUSTAKA

- Adiningtyas, A dan Mulyono, P., 2016, "Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa", Jurnal Rekayasa Proses, Volume 10 No.2, hal. 1-7.
- Arugula, M.A., Brastad, K.S., Minteer, S.D., He, Z., 2012, "Enzyme catalyzed electricity-driven water softening system", Enzyme and Microbial Technology 51: 396-401.
- Crini, G., 2006, "Non-conventional low-cost adsorbents for dye removal:

 A review", Bioresource
 Technology, 97(9), 1061–1085.
- Dąbrowski, A., 2001, "Adsorption from theory to practice", *Advances in Colloid and Interface Science*, 93(1), 135–224.
- Derylo-Marczewska, et al, 2005, "Changes in the Surface Chemistry and Adsorptive Properties of Active Carbon Previously Oxidized and

- Heat-treated at Various Temperatures. III. Studies of the Adsorption of Organic Solutes from Aqueous Solutions", Adsorption Science & Technology Vol. 23 No. 10.
- Hasan dan Budi, 2015, "Desilikasi Karbon Aktif Sekam Padi Sebagai Adsorben Hg Pada Limbah Pengloahan Emas Di Kabupaten Buru Propinsi Maluku", Indonesia Chimica Acta, Vol.7. No. 2.
- Kabay, N., Demicioglu, M., Ersöz, E., Kurucaovali, I., 2002, "Removal of calcium and magnesium hardness by electrodialysis", Desalination 149: 343-349.
- Kardjono, 2007, "Proses Pertukaran Ion Dalam Pengolahan Air", Vol. 13, No: 03.
- Kundari, N. A. & Wiyuniati, S, 2008, "Tinjauan Kesetimbangan Adsorpsi Tembaga dalam Limbah Pencuci PCB dengan Zeolit", Seminar Nasional IV SDM Teknologi Nuklir. Yogyakarta, 25-26 Agustus 2008.
- Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q., & Wang, W., 2017, "Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon:

 A Plausible Adsorption Mechanism", Scientific Reports, (September), 1–12.
- Miaratiska, N. dan R. Azizah, R., 2015, "Hubungan Paparan Nikel dengan Gangguan Kesehatan Kulit pada Pekerja Industri Rumah Tangga Pelapisan Logam di Kabupaten Sidoarjo", Universitas Airlangga.
- Praja, M. H., & Oktarlina, R. Z, 2016, "Uji Efektivitas Daun Petai Cina (Laucaena glauca) Sebagai Antiinflamasi Dalam The Effectiveness Leaves Chinese's Petai (Leucaena glauca) As an Anti- Inflammatory Treatment of Injury In Swollen", *Majority*, *5*, 86–89.
- Priadi, C. R., Anita, Sari, P. N., & Moersidik, S., 2014, "Industri

- Keramik Oleh Limbah Tanah Liat", *Reaktor*, *15*(1), 10–19.
- Rolence, C., Machunda, R.L., Njau, K.N, 2014, "Water hardness removal by coconut shell activated carbon", International Journal of Science, Technology and Society 2(5): 97-102.
- Rumidatul, A, 2006, "Effectivity of activated charcoal as adsorbent for wastewater treatment", *IPB* (Bogor Agricultural University).
- Setyadhi, L., Wibowo, D., & Ismadji, S, 2005, "Modifikasi Sifat Kimia Permukaan Karbon Aktif Dengan Asam Oksidator dan Non-oksidator Serta Aplikasinya Terhadap Adsorpsi Methylene Blue", *The 4th National Conference: Design and Application of Technology 2005 Modifikasi*, (1), 69–76.
- Widyasmara et al., 2013, "Potensi Membran Mikrofiltrasi Dan Ultrafiltrasi Untuk Pengolahan Limbah Cair Berminyak", Jurnal teknologi kimia dan energi 2:295-307.
- Zeppenfeld, K, 2011, "Electrochemical removal of calcium and magnesium ions from aqueous solutions", Desalination 277: 99-105.