SIFAT MEKANIK LAPISAN FILM NANOKOMPOSIT KITOSAN-SELULUZA
ASETAT-PVA SEBAGAI KEMASAN PANGAN BIODEGRADABLE

Athiek Sri Redjeki¹, Alvika Meta Sari¹
athiekssi@yahoo.com
¹Jurusan Teknik Kimia, Fakultas Teknik, Universitas Muhammadiyah Jakarta

Kata kunci: film nanokomposit, nanopartikel kitosan, selulosa asetat, biodegradable

ABSTRACT. The aim of this research is to investigate the mechanical properties of chitosan-acetic cellulose-PVA application as food (fish) packaging. Nanoscale chitosan was made from chitin using STPP. Acetic cellulose was made from wastewater of tofu industry fermented using Acetobacter xylina into nata de soya (NDS). NDS was then activated using HCl and NaOH to produce acetic cellulose. Nano-chitosan was mixed with acetic cellulose and PVA to form film to be applied as food packaging for fish. The nanocomposite film was investigated for its mechanical properties. It was observed that the nanocomposite film has good mechanical properties. The elongation was 30 % and the average tensile strength was 525 kg/cm².

Keywords: nanocomposite film, chitosan nanoparticle, acetic cellulose, biodegradable

PENDAHULUAN

pengisi. Berbagai senyawa yang berfungsi sebagai filler misalnya kitosan, titanium oksida, dan zinc oksida (Henriette, 2009).

Kitosan merupakan filler yang banyak digunakan untuk kemasan. Kitosan merupakan polimer alam, mempunyai struktur polisakarida tidak toksik, biodegradabel, biokompatibel, hidroflik, mempunyai sifat fisik, mekanik, termal dan sifat kimia yang baik (Rechelle et al., 2008). Kitosan digunakan untuk bahan kemasan karena mempunyai sifat sebagai anti bakteri, anti jamur, sebagai penghalang uap air, oil, flavor dan aroma pada makanan (Ham et al., 2005). Untuk meningkatkan permeabilitas terhadap uap air, gas dan CO₂, serta meningkatkan kekuatan tarik, persen perpanjangan, kitosan dikompositkan dengan selulosa asetat. Komposit kitosan-selulosa asetat selain mempunyai sifat mekanik, sifat fisik dan sifat termal yang lebih baik juga bersifat sebagai antibakteri.

Selulosa asetat merupakan salah satu jenis polimer yang banyak digunakan untuk industri, salah satunya sebagai polimer pada pembuatan membran filtrasi. Selulosa asetat sebagai bahan polimer alam yang mudah didapat, degradable dan renewable.

Dalam pemilihan bahan pengemas makanan, minuman dan farmasi harus dipikatkan sifat permeabilitasnya baik terhadap udara, oksigen maupun air atau uap air dan harus selalu memperhatikan bahwa dalam plastik kemasan terdapat bahan yang dapat membahayakan kesehatan tubuh kita, diantaranya mnomer dan aditif.

Seal (1988) menyatakan polimer biodegradabel merupakan polimer yang menggunakan bahan yang dapat didegradasi secara biologis karena adanya kemampuan yang mudah untuk didegradasi menjadi senyawa dengan berat molekul rendah, dimana paling sedikit satu tahap pada proses degradasinya melalui metabolisme secara alami.

Kemasan pangan biodegradable dihasilkan dari bahan bahan alami yang memiliki beberapa keunggulan dibanding bahan-bahan kemasan sintetik konvensional. Kemasan biodegradabel dibuat dari polimer alami terbaru yang juga dapat memberikan kontribusi dalam pemecahan masalah polusi lingkungan. Selain itu hal ini juga menciptakan pasar baru bagi produk-produk pertanian (Gontard, 1994).
Menurut Junizal (1976), tiga proses utama segera terjadi pada ikan segar yang baru ditangkap yaitu: pertama proses autolisis dan ensimatis selama ikan mengalami perigor dan rigor mortis, kemudian dilanjutkan oleh serangan bakteri pembusuk dan terakhir terjadinya oksidasi reduksi asam lemak yang menyebabkan bau tengik (rancid) pada tubuh ikan.

Pencemaran akibat air limbah tahu merupakan masalah utama yang mengganggu kesehatan lingkungan khususnya pada musim kemarau. Selama ini air limbah tahu tersebut belum pernah dimanfaatkan sehingga dapat mencemari lingkungan sekitar industri. Air limbah tahu adalah air sisa penggumpalan tahu (whey tofu) yang dihasilkan selama proses pembuatan tahu (Lestari, 1994).

Air limbah tahu masih mengandung bahan-bahan organik seperti protein, lemak dan karbohidrat yang mudah busuk sehingga menimbulkan bau yang kurang sedap (Shurtlef dan Aoyogi, 1975). Jika ditinjau dari komposisi kimianya, ternyata air limbah tahu mengandung nutrien-nutrien (protein, karbohidrat, dan bahan-bahan lainnya) yang jika dibiarakan dibuang begitu saja ke sungai justru dapat menimbulkan pencemaran, tetapi jika dimanfaatkan akan menguntungkan perajin tahu atau masyarakat yang berminat mengolahnya.

Limbah air tahu (whey tofu) selain mengandung protein juga mengandung vitamin B terlarut dalam air, lestin dan oligosakarida. Whey tahu mempunyai prospek untuk dimanfaatkan sebagai media fermentasi bakteri, di antaranya bakteri asam asetat Asetobacter sp termasuk bakteri Asetobacter xylinum. Asetobacter xylinum dapat mengubah gula subtrat menjadi gel selulosa yang biasa dikenal dengan nata.

Pemanfaatan bahan alam untuk kemasan yang biodegradabel dab ramah lingkungan terus dikembangkan untuk memperpanjang umur simpan dan mempertahankan kualitas makanan serta meminimalkan limbah kemasan (Tharanathan, 2003). Salah satu bahan alam yang dikembangkan sebagai bahan kemasan adalah selulosa asetat.

Kemasan biodegradabel ini dibuat dengan bahan dasar Selulosa Asetat. Selulosa asetat merupakan ester organik yang berupa padatan tidak berbau, tidak beracun, tidak berasa dan berwarna putih yang dibuat dari mereaksikan selulosa dengan asam asetat anhidrida dengan bantuan asam sulfat sebagai katalis (Krostwitch, 1990). Bahan baku selulosa umumnya didapat dari kapas yang memiliki kemurnian dengan nilai α-selulosa sampai 99% (Ulman's encyclopedia,1999). Namun saat ini...
penggunaan selulosa microbial sebagai bahan baku selulosa asetat juga telah banyak digunakan karena memiliki beberapa keunggulan yaitu sifat selulosa yang dihasilkan seragam dengan kemurnian yang tinggi, tidak memerlukan banyak lahan untuk memproduksinya, serta waktu panen yang cukup singkat. Salah satu penelitian dilakukan oleh Safriani (2008) yang membuat biopolimer selulosa asetat dengan bahan dasar nata de coco.

Proses asetilasi dimaksudkan untuk mensubsitusi gugus hidroksil selulosa dengan gugus asetil, sehingga terbentuk selulosa asetat. Reaksi dilakukan dengan mencampurkan asam asetat glacial dengan selulosa sampai selulosa larut sempurna dalam campuran asetilasi dan derajat substitusi antara 2,5-2,40. Sedangkan proses hidrolisis dimaksudkan untuk menghilangkan sebagian gugus asetil dari selulosa trimester dan untuk menurunkan kombinasi ester sulfat (Kirk dan Othmer, 1993).

Kitosan adalah produk terdasestilasi dari kitin yang merupakan biopolimer alami kedua terbanyak di alam setelah selulosa, yang banyak terdapat pada serangga, krustasea, dan fungi (Sanford dan Hutchings, 1987). Oligomer kitosan dapat dihasilkan dengan iradiasi sonic, hydrodynamic shearing, dan hidrolisis secara kimiai. Akan tetapi cara-cara tersebut menghasilkan oligomer dengan derajat polimerisasi (DP) yang rendah karena efisiensi yang rendah dan pemotongan yang acak. Degradasi kitosan secara enzimatis adalah cara yang lebih baik untuk mendapatkan oligomer kitosan dengan derajat polimerisasi yang lebih tinggi.

Ag(I) juga merupakan bakterisida. Marcia et al (2009) melaporkan bahwa penambahan nanopartikel dapat meningkatkan sifat mekanik film hidroksil propil metil selulosa dan menurunkan permeabilitas terhadap uap air.

METODOLOGI PENELITIAN

Bahan dan Alat

<table>
<thead>
<tr>
<th>Bahan-bahan:</th>
<th>Alat-alat:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kitosan</td>
<td>1. Beaker glass</td>
</tr>
<tr>
<td>2. STTP</td>
<td>2. Labu Erlenmeyer</td>
</tr>
<tr>
<td>3. Aquadest</td>
<td>3. Gelas ukur</td>
</tr>
<tr>
<td>5. Gliserol</td>
<td>5. Freezer</td>
</tr>
<tr>
<td>6. Asam asetat anhidrid</td>
<td>6. Pengaduk</td>
</tr>
<tr>
<td>7. PVA</td>
<td>7. Oven</td>
</tr>
<tr>
<td>8. Ikan</td>
<td>8. Centrifuge</td>
</tr>
<tr>
<td></td>
<td>9. Petri dish</td>
</tr>
</tbody>
</table>

Metode Penelitian

Penelitian ini dilakukan dalam beberapa tahap:
1. Sintesa nanopartikel kitosan.
2. Pembuatan lapisan film nanopartikel kitosan
3. Pembuatan film nanokomposit kitosan-selulosa asetat
4. Pembuatan dan uji kantong plastik biodegradabel berbahan nanokomposit kitosan-selulosa asetat terhadap sifat fisika, kimia, dan mekanik
5. Aplikasi dan uji pengaruh kemasan nanokomposit biodegradabel terhadap umur simpan dan mutu ikan.

1. **Sintesa Nano Partikel Kitosan**
 a. Sebanyak 15 gr kitosan dilarutkan dalam 500 ml asam asetat 1% dan dibiarkan mengendap selama 24 jam.
 b. Ke dalam endapan ditambahkan 450 ml larutan sodium tripoliposphat (STPP) 1,45 ppm dengan laju alir 10 ml/menit sambil diaduk dengan magnetic stirrer berkecepatan 1650 rpm
 c. Emulsi disimpan dalam freezer selama 24 jam, kemudian diaduk kembali dengan magnetic stirrer berkecepatan 1650 rpm selama 24 jam.
d. Emulsi diputar dalam centrifuge dengan kecepatan 9000 rpm.
e. Endapan berwarna putih yang terbentuk dicuci sampai pH 7, kemudian dikering-anginkan (di udara terbuka).

2. Pembuatan film nanopartikel kitosan
 a. Film nanopartikel kitosan dibuat dengan cara melarutkan 1 gram kitosan ke dalam 100 ml larutan asam asetat 0,5 % dan diaduk selama 15 menit.
 b. Kemudian ditambahkan gliserol dan diaduk selama 30 menit. Gliserol yang ditambahkan antara 15 sampai 30% berat kitosan.
 c. Kemudian 25 ml larutan dituang ke dalam petri dish dan dibiarkan pada suhu kamar sampai kering dengan kelembaban 50% RH.

3. Pembuatan film nanokomposit kitosan-selulosa asetat
 a. Sebanyak 2 gram nanopartikel kitosan dilarutkan dalam 100 ml akuades dan diaduk selama 20 menit dengan kecepatan 150 rpm pada suhu 90° C.
 b. Sebanyak 3 gram selulosa asetat dilarutkan dalam 100 ml asam asetat 1% dan diaduk selama 1 jam.
 c. Larutan selulosa asetat ditambahkan ke dalam larutan kitosan dan diaduk selama 90 menit pada suhu kamar.
 d. Larutan ini dituangkan ke dalam cawan petri dish, dan dikeringkan pada suhu kamar selama 3 hari sampai semua pelarutnya menguap.
 e. Film yang terbentuk dikeringkan pada suhu 40° C di oven selama 24 jam.

4. Pembuatan dan pengujian kantong plastik biodegradabel
 a. Bubuk selulosa asetat dan kitosan (dengan perbandingan variasi persen berat) dicampur sampai homogen selama 1 jam menggunakan mixer berkecepatan tinggi.
 b. Setelah pendinginan 1–2 menit, campuran ditambah dengan PVA dan dimasukkan ke dalam twin-screw extruder, lalu dipotong menjadi nano-granules.
 c. Kemudian 1,5 kg nano-granules dan 38,5 kg butiran PVA dieksstrusi selama 0,5 jam, selanjutnya dilakukan molding untuk mendapatkan kantong tipis dengan ketebalan 40μm dan ukuran 30x45 cm.
 d. Sampel kantong tipis (film) dikarakterisasi dengan XRD, FTIR, dan TEM.

5. Aplikasi dan uji pengaruh kemasan pada ikan
 1. Filet ikan tuna dimasukkan ke dalam kantong plastik nanokomposit.
 2. Ikan dalam kantong didiamkan beberapa hari sambil diamati penampakan dan tingkat kerusakan (bau, lendir) setiap hari.
 3. Sampel dianalisa kandungan TVB, TVN, dan TBA untuk mengetahui kerusakan protein.

HASIL PENELITIAN DAN PEMBAHASAN

Hasil Penelitian

Analisa Sifat fisik dan mekanik film kitosan
Pengaruh konsentrasi gliserol terhadap sifat fisik dan mekanik film kitosan ditunjukkan pada Tabel 1. Uji sifat mekanik dan fisik meliputi ketebalan film, kelembaban (MC), padatan material terlarut (TSM), permeabilitas uap air dan permeabilitas oksigen serta uji transparansi film akibat menyerap cahaya.
Tabel 1. Pengaruh gliserol terhadap MC,TSM dan ketebalan film kitosan

<table>
<thead>
<tr>
<th>No</th>
<th>Gliserol(%)</th>
<th>TSM basah</th>
<th>TSM kering</th>
<th>MC(%)</th>
<th>Ketebalan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>18.50 ± 1.37</td>
<td>19.48 ± 0.12</td>
<td>0.062 ± 0.06</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>88.15 ± 2.70</td>
<td>24.57 ± 0.46</td>
<td>22.54 ± 1.11</td>
<td>0.065 ± 0.04</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>28.23 ± 1.01</td>
<td>26.34 ± 0.62</td>
<td>22.57 ± 0.67</td>
<td>0.068 ± 0.06</td>
</tr>
</tbody>
</table>

Tabel 2. Pengaruh gliserol terhadap WVP,OP,TS dan %E

<table>
<thead>
<tr>
<th>No</th>
<th>Gliserol(%)</th>
<th>WVP</th>
<th>OP</th>
<th>TS(%)</th>
<th>Elongasi (%E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>99.21 ± 0.35</td>
<td>7.70 ± 0.72</td>
<td>62.83 ± 2.16</td>
<td>4.58 ± 0.26</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>11.1 ± 0.31</td>
<td>23.33 ± 0.79</td>
<td>42.65 ± 2.25</td>
<td>42.34 ± 2.34</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>11.2 ± 0.04</td>
<td>39.07 ± 1.19</td>
<td>33.17 ± 2.54</td>
<td>42.51 ± 1.26</td>
</tr>
</tbody>
</table>

Tabel 3. Pengaruh gliserol dan panjang gelombang terhadap absorbansi film nanopartikel kitosan

<table>
<thead>
<tr>
<th>No</th>
<th>Gliserol(%)</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0,021</td>
<td>75.37</td>
<td>89.12</td>
<td>91.91</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0,024</td>
<td>61.54</td>
<td>86.22</td>
<td>89.86</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,026</td>
<td>52.66</td>
<td>85.98</td>
<td>89.60</td>
</tr>
</tbody>
</table>

Kuat Tarik (Tensile Strength)

Tabel 4. Kuat Tarik Film Nanokomposit

<table>
<thead>
<tr>
<th>Tipe film</th>
<th>Rata-rata TS (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film nanokomposit kitosan-Selulosa asetat-PVA</td>
<td>525</td>
</tr>
<tr>
<td>Film nanokomposit kitosan-selulosa asetat</td>
<td>470</td>
</tr>
<tr>
<td>Film nanokomposit kitosan-PVA</td>
<td>350</td>
</tr>
<tr>
<td>Film Kitosan</td>
<td>275</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 4, rata-rata kuat tarik film menurun dengan meningkatnya nanopartikel yang ditambahkan. Hal ini terjadi karena nanopartikel kitosan dan selulosa asetat bersifat memperkuat ikatan intermolekul antar rantai polimer kitosan.

Persen Perpanjangan (% elongasi)

Tabel 5. Perpanjangan (%E) film nanokomposit

<table>
<thead>
<tr>
<th>Tipe film</th>
<th>%E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film nanokomposit kitosan-selulosa asetat-Cu</td>
<td>30,00</td>
</tr>
<tr>
<td>Film nanokomposit kitosan-selulosa asetat</td>
<td>26,00</td>
</tr>
<tr>
<td>Film nanokomposit kitosan-Cu</td>
<td>20,00</td>
</tr>
<tr>
<td>Film Kitosan</td>
<td>10,00</td>
</tr>
</tbody>
</table>

Berdasarkan tabel di atas, rata-rata % E film nanokomposit meningkat dengan meningkatnya nanopartikel yang ditambahkan. Hal ini terjadi karena nanopartikel bersifat meningkatkan ikatan intermolekuler antar rantai polimer kitosan dan meningkatkan kekakuan struktur film, sehingga film lebih kaku.

Uji Kelarutan Film dalam Air
Kelarutan film dalam air menunjukkan bagian film yang larut dalam air yang telah direndam selama 24 jam dan dinyatakan dalam persen kelarutan. Besar persen kelarutan dipengaruhi oleh komposisi atau kandungan film. Film hidrofilik seperti film kitosan memiliki kelarutan film dalam air yang sangat besar. Adanya nanopartikel maka kelarutan film akan berkurang karena sifat hidrofobisitas film meningkat seperti yang ditunjukkan pada Tabel 6.
Berdasarkan Tabel 6 di atas, persen kelarutan film kitosan dalam air mencapai 86%. Hal ini disebabkan karena film kitosan merupakan film yang bersifat hidrofilik yang suka air (mudah larut dalam air) sehingga karena sifatnya, film kitosan kurang baik dalam menahan uap air.

Penambahan nanopartikel pada pembuatan film kitosan telah menghasilkan film yang kelarutan film dalam airnya lebih rendah. Hasil penelitian menunjukkan bahwa semakin tinggi jumlah nanopartikel yang ditambahkan, maka semakin rendah kelarutannya dalam air. Hal ini terjadi karena nanopartikel bersifat hidrofobik yang fungsinya adalah memperbaiki sifat penghalang film terhadap air. Dengan semakin tingginya nanopartikel yang ditambahkan, maka sifat hidrofobisitas film nanokomposit pun meningkat sehingga kelarutan film dalam air pun semakin turun.

KESIMPULAN

Film nanokomposit kitosan-selulosa asetat-PVA mempunyai kekuatan mekanik yang baik yaitu tensile strength 525 kg/cm² dan elongasi 30 %.

DAFTAR PUSTAKA

