PENGARUH SUHU TERHADAP YIELD VALUABLE CHEMICALS PADA FASE ORGANIK HASIL PIROLISIS CANGKANG KELAPA SAWIT

Joko Pitoyo, Totok Eka Suharto, Siti Jamilatun

Abstract


Pirolisis cangkang kelapa sawit dengan reaktor fixed bed menghasilkan fase organik, fase air, gas, dan char. Fase organik hasil pirolisis mempunyai kandungan valuable chemicals seperti phenol, guaiacol, syringol, creosol, p-ethylguaiacol, eugenol, o-cresol, dan xylenol. Penelitian ini dilakukan untuk mempelajari pengaruh suhu terhadap yield valuable chemicals pada fase organik hasil pirolisis cangkang kelapa sawit. Pirolisis dilakukan pada suhu 300, 400, 500, dan 600 ͦC. Komposisi fase organik dianalisis menggunakan Gas Chromatography-Mass Spectrometry (GC-MS). Hasil penelitian  menunjukkan bahwa suhu mempunyai peranan penting terhadap yield valuable chemicals. Kandungan guaiacol, creosol, p-ethylguaiacol, o-cresol dan syringol tertinggi didapatkan pada suhu 400 ͦC dengan yield berturut-turut sebesar 2.88, 3.62, 3.86, 0.41, dan 5.03 wt.%. Kandungan phenol dan eugenol tertinggi didapatkan pada suhu 500 ͦC dengan yield sebesar 35.89 dan 1.83 wt.%. Kandungan xylenol tertinggi didapatkan pada suhu 600  ͦC dengan yield sebesar 0.21 wt.%.


Full Text:

PDF

References


Aliu, E., Hart, A., & Wood, J. (2021). Mild-Temperature hydrodeoxygenation of vanillin a typical bio-oil model compound to Creosol a potential future biofuel. Catalysis Today, 379, 70–79. https://doi.org/10.1016/j.cattod.2020.05.066

An, Y., Tahmasebi, A., Zhao, X., Matamba, T., & Yu, J. (2020). Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresource Technology, 306. https://doi.org/10.1016/j.biortech.2020.123111

Ani, F. N. (n.d.). Oil palm shell as a source of phenol. https://www.researchgate.net/publication/285298658

Api, A. M., Belsito, D., Biserta, S., Botelho, D., Bruze, M., Burton, G. A., Buschmann, J., Cancellieri, M. A., Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Fryer, A. D., Gadhia, S., Jones, L., Joshi, K., Kumar, M., Lapczynski, A., Lavelle, M., … Tokura, Y. (2021). RIFM fragrance ingredient safety assessment, o-cresol, CAS Registry Number 95-48-7. In Food and Chemical Toxicology (Vol. 149). Elsevier Ltd. https://doi.org/10.1016/j.fct.2021.112112

Api, A. M., Belsito, D., Botelho, D., Bruze, M., Burton, G. A., Cancellieri, M. A., Chon, H., Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Fryer, A. D., Jones, L., Joshi, K., Kumar, M., Lapczynski, A., Lavelle, M., Lee, I., Liebler, D. C., … Tokura, Y. (2022). RIFM fragrance ingredient safety assessment, 2,6-dimethoxyphenol, CAS Registry Number 91-10-1. In Food and Chemical Toxicology (Vol. 165). Elsevier Ltd. https://doi.org/10.1016/j.fct.2022.113092

Chang, G., Huang, Y., Xie, J., Yang, H., Liu, H., Yin, X., & Wu, C. (2016). The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Conversion and Management, 124, 587–597. https://doi.org/10.1016/j.enconman.2016.07.038

Chang, G., Miao, P., Yan, X., Wang, G., & Guo, Q. (2018). Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures. Bioresource Technology, 253, 214–219. https://doi.org/10.1016/j.biortech.2017.12.084

Direktorat Jendral Perkebunan. (2021). Statistik Perkebunan Indonesia 2018-2021. Secretariate of Directorate General of Estates, 1–82.

Evans, R. J., & Milne, T. A. (1987). Molecular characterization of the pyrolysis of biomass. Energy & Fuels, 1(2), 123–137. https://doi.org/10.1021/ef00002a001

Irem, B., & Korkmaz, O. (2022). The anti-campylobacter activity of eugenol and its potential for poultry meat safety : A review. 394(June). https://doi.org/10.1016/j.foodchem.2022.133519

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J. ichiro, & Budiman, A. (2020). Catalytic pyrolysis of spirulina platensis residue (SPR): Thermochemical behavior and kinetics. International Journal of Technology, 11(3), 522–531. https://doi.org/10.14716/ijtech.v11i3.2967

Jamilatun, S., Budiman, A., Anggorowati, H., Yuliestyan, A., Pradana, Y. S., Budhijanto, & Rochmadi. (2019). Ex-situ catalytic upgrading of Spirulina platensis residue oil using silica alumina catalyst. International Journal of Renewable Energy Research, 9(4), 1733–1740. https://doi.org/10.20508/ijrer.v9i4.10119.g7776

Jamilatun, S., Elisthatiana, Y., Aini, S. N., Mufandi, I., & Budiman, A. (2020). Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue. Elkawnie, 6(1), 96. https://doi.org/10.22373/ekw.v6i1.6323

K N, Y., T, P. D., P, S., S, K., R, Y. K., Varjani, S., AdishKumar, S., Kumar, G., & J, R. B. (2022). Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286(P2), 131824. https://doi.org/10.1016/j.chemosphere.2021.131824

Kim, S. J., Jung, S. H., & Kim, J. S. (2010). Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresource Technology, 101(23), 9294–9300. https://doi.org/10.1016/j.biortech.2010.06.110

Li, H., Lin, L., Feng, Y., Zhao, M., Li, X., Zhu, Q., & Xiao, Z. (2018). Enrichment of antioxidants from soy sauce using macroporous resin and identification of 4-ethylguaiacol, catechol, daidzein, and 4-ethylphenol as key small molecule antioxidants in soy sauce. Food Chemistry, 240, 885–892. https://doi.org/10.1016/j.foodchem.2017.08.001

Li, N., Su, J., Wang, H., & Cavaco-Paulo, A. (2021). Production of antimicrobial powders of guaiacol oligomers by a laccase-catalyzed synthesis reaction. Process Biochemistry, 111, 213–220. https://doi.org/10.1016/j.procbio.2021.07.018

Lyu, G., Wu, S., & Zhang, H. (2015). Estimation and comparison of bio-oil components from different pyrolysis conditions. Frontiers in Energy Research, 3(JUN), 1–11. https://doi.org/10.3389/fenrg.2015.00028

Misson, M., Haron, R., Kamaroddin, M. F. A., & Amin, N. A. S. (2009). Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresource Technology, 100(11), 2867–2873. https://doi.org/10.1016/j.biortech.2008.12.060

Omoriyekomwan, J. E., Tahmasebi, A., & Yu, J. (2016). Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresource Technology, 207, 188–196. https://doi.org/10.1016/j.biortech.2016.02.002

Roswanda, R., Sirampun, A. D., Mukti, R. R., & Mujahidin, D. (2018). A straightforward selective acylation of phenols over ZSM-5 towards making paracetamol precursors. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 13(3), 573–587. https://doi.org/10.9767/bcrec.13.3.2856.573-587

Soongprasit, K., Sricharoenchaikul, V., & Atong, D. (2020). Phenol-derived products from fast pyrolysis of organosolv lignin. Energy Reports, 6, 151–167. https://doi.org/10.1016/j.egyr.2020.08.040

Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., & Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143–150. https://doi.org/10.1016/j.jaap.2013.10.013

Stołyhwo, A., & Sikorski, Z. E. (2005). Polycyclic aromatic hydrocarbons in smoked fish - A critical review. Food Chemistry, 91(2), 303–311. https://doi.org/10.1016/j.foodchem.2004.06.012

Subiyanto, B., Basri, H., Sari, L. N., & Rosalita, Y. (2007). Komponen Kimia Cangkang Sawit ( Elaeis guineensis Jacq .) dan Pengaruhnya terhadap Sifat Beton Ringan Chemical Components of Oil Palm ( Elaeis guineensis Jacq .) Shell and Its Effect on Light Concrete Performance. 5(4).

Susanto, J. P., Dwi, A., Dan, S., & Suwedi, N. (2020). Perhitungan Potensi Limbah Padat Kelapa Sawit untuk Sumber Energi Terbaharukan dengan Metode LCA Palm Solid Wastes Potential Calculation for Renewable Energy with LCA Method. 18(2), 165–172.

Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. In Energy (Vol. 36, Issue 5, pp. 2328–2342). Elsevier Ltd. https://doi.org/10.1016/j.energy.2011.03.013

Tsukatani, H., Okudaira, H., Shitamichi, O., Uchimura, T., & Imasaka, T. (2010). Selective determination of 2,4-xylenol by gas chromatography/supersonic jet/resonance-enhanced multiphoton ionization/time-of-flight mass spectrometry. Analytica Chimica Acta, 682(1–2), 72–76. https://doi.org/10.1016/j.aca.2010.09.043

Widiyarti, G., Abbas, J., & Anita, Y. (2014). Biotransformation and cytotoxic activity of guaiacol dimer. Indonesian Journal of Chemistry, 14(2), 179–184. https://doi.org/10.22146/ijc.21256

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

Yu, B., Li, C., Gu, L., Zhang, L., Wang, Q., Zhang, Y., Lin, J., Hu, L., Jia, Y., Yin, M., & Zhao, G. (2022). Eugenol protects against Aspergillus fumigatus keratitis by inhibiting inflammatory response and reducing fungal load. European Journal of Pharmacology, 924. https://doi.org/10.1016/j.ejphar.2022.174955

Zeng, Y., Liu, S., Xu, X., Chen, Y., & Zhang, F. (2020). Fabrication and curing properties of o-cresol formaldehyde epoxy resin with reversible cross-links by dynamic boronic ester bonds. Polymer, 211. https://doi.org/10.1016/j.polymer.2020.123116


Refbacks

  • There are currently no refbacks.


Prosiding Seminar Nasional Penelitian LPPM UMJ Indexed by:

Google Scholar

==============================================================================================================

Prosiding Seminar Nasional Penelitian LPPM UMJ
Universitas Muhammadiyah Jakarta
Jl.KH. Ahmad Dahlan Cirendeu Ciputat Jakarta Selatan
Telp : 021 7424950
Fax : 021 7430756

E-ISSN: 2745-6080

==============================================================================================================

Powered by Puskom-UMJ