Studi Efektivitas Metode Ekstraksi Selulosa dari Agricultural Waste

Nafira Alfi Zaini Amrillah, Farrah Fadhillah Hanum, Aster Rahayu

Abstract


Potensi hasil pertanian di Indonesia yang cukup tinggi menyebabkan potensi limbahnya juga semakin besar sehingga pengolahan limbah yang bijak akan menentukan kemanfaatan dari limbah tersebut. Salah satu bagian limbah yang bisa diambil adalah selulosa, mengingat selulosa ini banyak dimanfaatkan dalam pembuatan kertas, plastik dan bahan industri lainnya. Untuk mendapatkan selulosa maka dilakukan proses delignifikasi yang bertujuan untuk menghilangkan kandungan lignin dari bahan berlignoselulosa dalam hal ini adalah agricultural waste. Delignifikasi tersebut dapat dilakukan dengan beberapa metode meliputi perlakuan basa (modifikasi proses bleaching), enzimatik, extrusion dan Iradiasi Gelombang Mikro. Studi ini diharapkan dapat memberikan gambaran proses ekstraksi selulosa dari limbah pertanian dengan cara membandingkan beberapa metode tersebut berdasarkan penelitian-penelitian sebelumnya supaya peneliti selanjutnya dapat menentukan proses ekstraksi yang paling sesuai dengan kondisi dan tujuan penelitiannya.


Full Text:

PDF

References


Asmoro, N. W., Afriyanti, A., & Ismawati, I. (2018). Ekstraksi Selulosa Batang Tanaman Jagung (Zea Mays) Metode Basa. Jurnal Ilmiah Teknosains, 4(1), 24–28. https://doi.org/10.26877/jitek.v4i1.1710

Ekebafe, L. O., Ekebafe, M. O., Akpa, F. A. O., Erhuanga, G., & Etiobhio, B. W. (2011). Graft Polimerizacija Akrilonitrila Na Delignifikovanim Celuloznim Materijalima Dobijenim Iz Bambusa (Bambusa Vulgaris) I Njihova Primena Za Uklanjanje Teških Metala Iz Vodenih Rastvora. Chemical Industry and Chemical Engineering Quarterly, 17(2), 133–140. https://doi.org/10.2298/CICEQ101021063E

Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., & Valenza, A. (2016). A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering, 85, 150–160. https://doi.org/10.1016/j.compositesb.2015.09.028

Fitriana, N. E., Suwanto, A., Jatmiko, T. H., Mursiti, S., & Prasetyo, D. J. (2020). Cellulose extraction from sugar palm (Arenga pinnata) fibre by alkaline and peroxide treatments. IOP Conference Series: Earth and Environmental Science, 462(1). https://doi.org/10.1088/1755-1315/462/1/012053

Gatot S. Hutomo. (2012). Synthesis and characterization of sodium carboxymethylcellulose from pod husk of Cacao (Theobroma cacao L.). African Journal of Food Science, 6(6), 1–6. https://doi.org/10.5897/ajfs12.020

Gautam, S. P., Bundela, P. S., Pandey, A. K., Jamaluddin, J., Awasthi, M. K., & Sarsaiya, S. (2010). A review on systematic study of cellulose. Journal of Applied and Natural Science, 2(2), 330–343. https://doi.org/10.31018/jans.v2i2.143

Hutomo, G. S., Marseno, D. W., Anggrahini, S., & Supriyanto. (2012). Ekstraksi Selulosa dari Pod Husk Kakao Menggunakan Sodium Hidroksida. Agritech, 32(3), 223–229. https://jurnal.ugm.ac.id/agritech/article/view/9612/7187

Jiang, F., & Hsieh, Y. Lo. (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122, 60–68. https://doi.org/10.1016/j.carbpol.2014.12.064

Jufrinaldi, J. (2018). Isolasi Selulosa Dari Bagas Tebu Melalui Pemanasan Iradiasi Gelombang Mikro. Jurnal Ilmiah Teknik Kimia, 2(2), 83. https://doi.org/10.32493/jitk.v2i2.1683

Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., & Chaabouni, S. E. (2016). Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products, 87, 287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

Kang, K. E., Jeong, G. T., & Park, D. H. (2012). Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess and Biosystems Engineering, 35(5), 705–713. https://doi.org/10.1007/s00449-011-0650-8

Lamsal, B., Yoo, J., Brijwani, K., & Alavi, S. (2010). Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass and Bioenergy, 34(12), 1703–1710. https://doi.org/10.1016/j.biombioe.2010.06.009

Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33. https://doi.org/10.1007/s10924-006-0042-3

Macías-Almazán, A., Lois-Correa, J. A., Domínguez-Crespo, M. A., López-Oyama, A. B., Torres-Huerta, A. M., Brachetti-Sibaja, S. B., & Rodríguez-Salazar, A. E. (2020). Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust. Carbohydrate Polymers, 238(March), 116171. https://doi.org/10.1016/j.carbpol.2020.116171

Merci, A., Urbano, A., Grossmann, M. V. E., Tischer, C. A., & Mali, S. (2015). Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Research International, 73, 38–43. https://doi.org/10.1016/j.foodres.2015.03.020

Meyabadi, T. F., & Dadashian, F. (2012). Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticles production using response surface methodology. Fibers and Polymers, 13(3), 313–321. https://doi.org/10.1007/s12221-012-0313-7

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. In Chemical Society Reviews (Vol. 40, Issue 7). https://doi.org/10.1039/c0cs00108b

Mulyadi, I. (2019). Isolasi Dan Karakteristik Selulosa. Jurnal Saintika Unpam, 1(2), 177–180.

Mussatto, S. I., Rocha, G. J. M., & Roberto, I. C. (2008). Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain. Cellulose, 15(4), 641–649. https://doi.org/10.1007/s10570-008-9198-4

Nechyporchuk, O. (2015). Cellulose nanofibers for the production of bionanocomposites Nanofibres de cellulose pour la production de bionanocomposites. 175.

Reddy, N., & Yang, Y. (2009). Natural cellulose fibers from soybean straw. Bioresource Technology, 100(14), 3593–3598. https://doi.org/10.1016/j.biortech.2008.09.063

Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045

Sen, G., Mishra, S., Rani, G. U., Rani, P., & Prasad, R. (2012). Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculant. International Journal of Biological Macromolecules, 50(2), 369–375. https://doi.org/10.1016/j.ijbiomac.2011.12.014

Sena, P. W., Ganda Putra, G. P., & Suhendra, L. (2021). Karakterisasi Selulosa dari Kulit Buah Kakao (Theobroma cacao L.) pada Berbagai Konsentrasi Hidrogen Peroksida dan Suhu Proses Bleaching. Jurnal Rekayasa Dan Manajemen Agroindustri, 9(3), 288. https://doi.org/10.24843/jrma.2021.v09.i03.p03

Silitonga, N., Tarigan, N., & Saragih, G. (2019). Pengaruh Konsentrasi NaOH pada Karakteristik α-Selulosa dari Pelepah Kelapa Sawit. Jurnal Ready Star, 2(1), 103–108.

Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 34(2), 421–424. https://doi.org/10.1016/j.renene.2008.05.008

Tibolla, H., Pelissari, F. M., & Menegalli, F. C. (2014). Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. Lwt, 59(2P2), 1311–1318. https://doi.org/10.1016/j.lwt.2014.04.011

Trisanti, P. N., Setiawan H.P, S., Nura’ini, E., & Sumarno. (2018). Gergaji Kayu Sengon Melalui Proses Delignifikasi Alkali Ultrasonik. Sains Materi Indonesia, 19(3), 113–119.

Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: A review. Bioresource Technology, 72(2), 169–183. https://doi.org/10.1016/S0960-8524(99)00104-2

Wang, M., Zhou, D., Wang, Y., Wei, S., Yang, W., Kuang, M., Ma, L., Fang, D., Xu, S., & Du, S. kui. (2016). Bioethanol production from cotton stalk: A comparative study of various pretreatments. Fuel, 184, 527–532. https://doi.org/10.1016/j.fuel.2016.07.061

Zhang, M., Qin, Y., Ma, J., Yang, L., Wu, Z., Wang, W., & Wang, C. (2016). ultrasound and Fenton reagent. Ultrasonics Sonochemistry. http://dx.doi.org/10.1016/j.ultsonch.2016.01.027

Zhu, J. Y., Sabo, R., & Luo, X. (2011). Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chemistry, 13(5), 1339–1344. https://doi.org/10.1039/c1gc15103g


Refbacks

  • There are currently no refbacks.


Prosiding Seminar Nasional Penelitian LPPM UMJ Indexed by:

Google Scholar

==============================================================================================================

Prosiding Seminar Nasional Penelitian LPPM UMJ
Universitas Muhammadiyah Jakarta
Jl.KH. Ahmad Dahlan Cirendeu Ciputat Jakarta Selatan
Telp : 021 7424950
Fax : 021 7430756

E-ISSN: 2745-6080

==============================================================================================================

Powered by Puskom-UMJ