TELAAH SISTEMATIS TERHADAP BASIS DATA BAHAN ALAM UNTUK PENGEMBANGAN PRODUK SUPLEMEN HERBAL
Abstract
Suplemen herbal merupakan produk yang sudah jamak ditemukan di pasaran, misalnya kunyit putih yang dipercaya dapat menghambat kanker, sambong yang dipercaya dapat mengobati luka, maupun buah merah Papua yang dipercaya dapat menghambat HIV (AIDS). Penelitian kimia bahan alam terhadap tanaman/herbal dimulai dengan pendekatan wet laboratory, terutama pada kajian biologi molekuler. Hanya saja, basis teknik informatika yang menyajikan informasi mengenai landasan kimia bahan alam dari produk herbal tersebut masih belum banyak diketahui. Information gap ini yang harus segera dijembatani, sehingga informasi yang dihasilkan wet laboratory dapat dikelola dengan baik. Kami melakukan telaah sistematis dan pencarian terhadap literature melalui Google Scholars dan Pubmed terkait basis data bahan alam maupun metode komputasi kandidat obat herbal. Basis data bahan alam untuk anotasi herbal sudah tersedia baik di dalam maupun luar negeri. Basis data Indonesia diantaranya adalah HerbalDB dari UI dan Basis data jamu dari IPB. Keduanya banyak terinspirasi dari basis data Knapsack milik Jepang. Basis data buatan luar negeri yang sangat intensif dikembangkan adalah Pengobatan Tradisional China (Traditional Chinese Medicine (TCM)), diantaranya adalah TCM Database@Taiwan dari Taiwan dan TCMID dari China. Fitur-fitur yang umumnya terdapat pada basis data tersebut adalah anotasi struktur kimia, identitas taksonomi, maupun sifat fisiko-kimia . Dalam konteks bioinformatika, basis data bahan alam sangat mendukung untuk pengembangan suplemen pangan maupun obat karena dapat menjadi feeder data untuk simulasi molekuler, seperti editing, penambatan, dan dinamika molekuler. Informasi utama yang melengkapi basis data berasal dari data wet experimentation, seperti data instrumen NMR, IR, dan UV-VIS. Informasi dari instrumentasi tersebut merupakan potongan “puzzle” untuk mengkonstruksi struktur kimia dari senyawa bahan alam tersebut.
ABSTRACT
Herbal supplements are products that are commonly found in the market, such as white turmeric that is believed to inhibit cancer, sambong thought to treat wounds, or red Papua fruit thought to inhibit HIV (AIDS). The chemical research of natural materials on plants/herbs begins with a wet laboratory approach, especially in the study of molecular biology. However, the basis of informatics techniques that provide information about the chemical foundation of natural ingredients from herbal products is still not widely known. This information gap should be bridged immediately, so the info produced wet laboratory can be appropriately managed. We conduct systematic reviews and literature searches through Google Scholars and Pubmed by natural materials data and computational methods of herbal medicine candidates. Natural products database for herbal annotations is available both at home and abroad. Indonesian databases include HerbalDB from UI and Database of herbal medicine from IPB. Both are much inspired from Japan's Knapsack database. The highly developed foreign-made database is Traditional Chinese Medicine (TCM), among them TCM Database@Taiwan from Taiwan and TCMID from China. The features commonly found in the database are chemical structure annotations, taxonomic identities, and physicochemical properties. In the context of bioinformatics, the database of natural products actively supports the development of food supplements as well as drugs as it can be a data feeder for molecular simulations, such as molecular docking and molecular dynamics. The primary information complementing the database comes from wet experimentation data, such as NMR, IR, and UV-VIS instrument data. Data from the instrumentation is a piece of "puzzle" to construct the chemical structure of the compound of the natural products.
Full Text:
PDFReferences
Afendi, F.M., R. Heryanto, L.K. Darusman, N.H.A. Syahrir, R. Bakri, dan N. Qomariasih. 2016. Jamu Informatics: A New Perspective in Jamu Research. CICSJ Bull., Vol. 34 (2). Division of Chemical Information and Computer Sciences The Chemical Society of Japan: 47. doi: 10.11546/ cicsj.34.47.
Afendi, F.M., T. Okada, M. Yamazaki, A. Hirai-Morita, Y. Nakamura, K. Nakamura, S. Ikeda, H. Takahashi, M. Altaf-UI-Amin, L.K. Darusman, K. Saito dan S. Kanaya. 2012. KNApSAcK Family Databases: Integrated Metabolite-Plant Species Databases for Multifaceted Plant Research. Plant Cell Physiol. Vol. 53 (2): e1. doi: 10. 1093/pcp/pcr165.
Chen, C.Y.C., S. Li, D. Benson, E. Bolton dan S. Bryant. 2011. TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for Drug Screening in Silico. Edited by A. Hofmann. PLoS One 6 (1). Blue Poppy Press: e15939. doi: 10.1371/journal.pone.0015939.
Claverie, J.M. dan C. Notredame. 2011. Bioinformatics for Dummies. Wiley. http://books.google.co.id/books?id=4Tw0aZBnBLEC.
Doroghazi, J.R., J.C. Albright, A.W. Goering, K.S. Ju, R.R. Haines, K.A. Tchalukov, D.P. Labeda, N.L. Kelleher dan W.W. Metcalf. 2014. A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics. Nat. Chem. Biol. Vol. 10 (11): 963 – 8. doi: 10.1038/ nchembio.1659.
Durrant, J.D. dan J.A. McCammon. 2011. Molecular Dynamics Simulations and Drug Discovery. BMC Biol., Vol. 9: 71. doi: 10.1186/1741-7007-9-71.
Grienke, U., M. Schmidtke, S. von Grafenstein, J. Kirchmair, K.R. Liedl dan J.M. Rollinger. 2012. Influenza Neuraminidase: A Druggable Target for Natural Products. Nat. Prod. Rep., Vol. 29 (1): 11 – 36. doi: 10.1039/c1np 00 053e.
Kim, S., P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang dan S.H. Bryant. 2016. PubChem Substance and Compound Databases. Nucleic Acids Res., Vol. 44 (D1): D1202 – D1213. doi: 10.1093/ nar/gkv951.
Ma, D.L., D.S.H. Chan dan C.H. Leung. 2011. Molecular Docking for Virtual Screening of Natural Product Databases. Chem. Sci., Vol. 2 (9). The Royal Society of Chemistry: 1656. doi: 10.1039/c1sc00152c.
Medema, M.H. dan M.A. Fischbach. 2015. Computational Approaches to Natural Product Discovery. Nat. Chem. Biol., Vol. 11 (9): 639 – 48. NIH Public Access. doi: 10.1038/ nchembio.1884.
Parikesit, A.A., B. Ardiansah, D.M. Handayani, U.S.F. Tambunan dan D. Kerami. 2016. Virtual Screening of Indonesian Flavonoid as Neuraminidase Inhibitor of Influenza a Subtype H5N1. IOP Conf. Ser. Mater. Sci. Eng., Vol. 107 (1): 12053. IOP Publishing doi: 10.1088/1757-899X/ 107/1/012053.
Syahdi, R.R., A. Mun’im, H. Suhartanto dan A. Yanuar. 2012. Virtual Screening of Indonesian Herbal Database as HIV-1 Reverse Transcriptase Inhibitor. Bioinformation, Vol. 8 (24): 1206 – 10. doi: 10.6026/97320630081206.
Tambunan, U.S.F., A.A. Parikesit, M.A. F. Nasution, A. Hapsari dan D. Kerami. 2017. Exposing the Molecular Screening Method of Indonesian Natural Products Derivate as Drug Candidates for Cervical Cancer (Summer 2017). Iran. J. Pharm. Res., Vol. 16 (3): 1113 - 1127. http://ijpr. sbmu.ac.ir/article_2088.html.
Valerio, L.G. 2009. In Silico Toxicology for the Pharmaceutical Sciences. Toxicol. Appl. Pharmacol., Vol. 241 (3): 356 – 70. doi: 10.1016/j.taap.2009. 08.022.
Whittaker, P.A. 2003. What Is the Relevance of Bioinformatics to Pharmacology?. Trends in Pharmacological Sciences., Vol. 24 (8): 434 - 9. doi: 10.1016/S0165-6147(03) 00197-4.
Xue, R., Z. Fang, M. Zhang, Z. Yi, C. Wen, dan T. Shi. 2013. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis. Nucleic Acids Res., Vol. 41 (D1): D1089 – D1095. Springer, New York. doi: 10.1093/nar/gks1100.
Yanuar, A., A. Mun’im, A.B.A. Lagho, R.R. Syahdi, M. Rahmat dan H. Suhartanto. 2011. Medicinal Plants Database and Three Dimensional Structure of the Chemical Compounds from Medicinal Plants in Indonesia. Biomolecules. Int. J. Comput. Sci. Vol. 8 (5): 180 – 183. http://arxiv.org/ abs/ 1111.7183.
Refbacks
- There are currently no refbacks.