PIEZORESISTIVE MICROCANTILEVER SEBAGAI SENSOR DENGAN SENSITIFITAS TINGGI

Aan Febriansyah <u>aan9277@gmail.com</u> Politeknik Manufaktur Negeri Bangka Belitung

ABSTRAK

Kebutuhan terhadap akurasi data menjadi mutlak dalam pemilihan sebuah alat deteksi/sensor. Kesalahan sekecil apapun atau ketidakakuratan data yang diperoleh akan menyebabkan kesalahan yang lain pada proses berikutnya. Aplikasi *piezoresistive microcantilever* sebagai sensor dengan tingkat akurasi dan sensitifitas tinggi mulai banyak dipelajari dan diterapkan dalam dunia kesehatan, biologi, kimia dan lingkungan hidup. *Piezoresistive microcantilever* memiliki sensitifitas yang sangat tinggi (skala attogram, 10⁻¹⁸).Dalam penggunaannya, *piezoresistive microcantilever* memerlukan instrumen pendukung dengan tingkat akurasi yang tinggi pula, seperti rangkaian kontrol penguat operasional (OP-AMP) dan pembagi tegangan. Pada kegiatan riset ini, akan dilakukan kegiatan yang meliputi pembuatan rangkaian *wheatstone bridge* sebagai detektor obyek, rangkaian OP-AMP menggunakan piranti dengan akurasi tinggi seperti INA 128, dan simulasi perubahan frekuensi resonansi berbasis Persamaan Euler-Bernoulli Beam sebagai deteksi keberadaan obyek. Obyek yang dideteksi dapat berukuran sampai dengan skala picogram. Saat terdeteksi, massa obyek akan mengakibatkan perubahan nilai defleksi nilai frekuensi resonansi. Perubahan ini akan dianalisa dan dipelajari untuk menentukan karakteristik metode pendeteksian/penyensoran.

Kata kunci: Piezoresistive Microcantilever, sensor, defleksi, frekuensi

Pendahuluan

Sebuah sistem deteksi sederhana dengan sensitivitas tinggi sangat dibutuhkan di bidang bioteknologi dan ilmu kedokteran. Interaksi antara biomolekul, misalnya, antigen/antibodi dan asam deoksiribonukleat (DNA)-DNA, umumnya diukur dengan menggunakan alat ukur, seperti : GCMS (*Gas Chromatography Mass Spectrum*), osilator kristal quartz atau menggunakan plasmon resonansi permukaan [1]. Metode-metode ini, memiliki beberapa kelemahan, antara lain:

a) metode GCMS memiliki resolusi massa tinggi, yaitu sekitar 1 pg (10⁻¹² gram), namun membutuhkan waktu yang lama untuk mengukur sampel,

b) metode osilator kristal quartz memiliki sensitivitas rendah 30 pg/Hz,

c) metoda plasmon resonansi permukaan adalah metode yang kompleks dan mahal.

Microcantilever (selanjutnya akan disebut mikrokantilever) adalah suatu struktur mekanik vang berbasis teknologi MEMS (Micro Electro *Mechanical Systems*) yang mengunakan metode titik gaya (force probes) pertama pada sistem AFM (Atomic Force Microscopy). Daya sensitivitasnya yang tinggi pada beberapa faktor kelembaban, lingkungan seperti suhu. kebisingan (noise) tekanan sudah dan

dibuktikan oleh beberapa peneliti. Pada tahun 1994, tim riset dari *Oak Ridge National Laboratory* dan IBM mengkonversi mekanisme yang menyebabkan munculnya gagasan baru pada aplikasi biosensor. Beberapa aplikasi mikrokantilever seperti pada Gambar 1 [2].

Gambar 1. AplikasiMikrokantilever

TE-001

Beberapa karakteristik yang dimiliki oleh mikrokantilever [1], antara lain:

- ukurannya kecil (dalam skala mikrometer),
- sensitifitas yang tinggi (attogram, 10⁻¹⁸),
- biaya yang relatif rendah,
- konsumsi energy listrik rendah,
- dapat mendeteksi beberapa obyek dengan hanya satu paltform,
- fabrikasinya sederhana, dan
- mudah untuk diintegrasikan dalam bentuk *microarray*, dan lain-lain.

Mikrokantilever bekerjamenggunakan getaran harmonik dengan frekuensi resonansipadasistemnya. Gambar2 menunjukkanstruktursederhanamikrokantilever sebelumdifungsikansebagai sensor.

Gambar 2.StrukturSederhanaMikrokantilever

Mikrokantilevermemiliki dua jenis mode yaitu mikrokantilever mode statis dan mode dinamis seperti yang ditunjukkan pada Gambar 3. Pada mode statis, seperti pada Gambar 3.a,

sensor mikrokantilever bekerja berdasarkan perbedaan surface stress (tegangan permukaan) yang timbul antara permukaan atas dan permukaan bawah selama terjadinya proses menempelnya molekul target pada lapisan fungsionalisasi. Perubahan tegangan permukaan ini akan mengakibatkan terjadinya bending pada mikrokantilever yang dinamakan defleksi (δ). Pada mode dinamis (Gambar 3.b), yang dimonitor adalah frekuensi resonansi yang berubah-ubah akibat massa yang diterima mikrokantilever. Defleksi awal terjadi akibat getaran/vibrasi piezoelectric efek yang diberikan pada mikrokantilever dan massa mikrokantilever sendiri sehingga menimbulkan nilai frekuensi tertentu. Sedangkan perubahan defleksi terjadi selain akibat efek getaran piezoelectric diberikan yang pada mikrokantilever juga disebabkan oleh perubahan massa (Δm) yang diterima oleh mikrokantilever. Sehingga frekuensi resonansi yangterjadi akan mengalami perubahan sesuai jumlah massa obyek yang diterima oleh mikrokantilever.

Perhitungan nilai defleksi menggunakan dua metode, yaitu *distributed load* dan *pointed load* seperti terlihat pada Gambar 4.

a. Distributed load b. Load at any Point Gambar 4. Metode Defleksi Mikrokantilever

Nilai defleksi pada mode statis untuk metode *Uniformly Distributed load* menggunakan Persamaan 1 dan *pointed load* menggunakan Persamaan 2 [4]:

$$\delta = \frac{\omega l^4}{\alpha \kappa l}$$
 ... (1)

$$\delta = \frac{Pa^2}{6EI}(3l-a) \qquad \dots (2)$$

Dengan*E* adalah *Young Modulus* bahan yang digunakan, *P* adalah gaya beban yang dikenakan pada mikrokantilever, *I* adalah panjang mikrokantilever, *a* adalah jarak obyek dari titik *fixed end* mikrokantilever, $\omega = 2\pi f$ dan *I* adalah Momen Inersia mikrokantilever yang didapat menggunakan Persamaan 3 [5].

$$I = \frac{wt^3}{12} \qquad \dots (3)$$

Dengan w dan t adalah lebar dan tebal kantilever. Untuk menentukan besarnya defleksi pada mode dinamis, digunakan Persamaan Euler-Bernoulli Beam metode *Uniformly Distributed load*, yaitu [5]:

$$EI\frac{\partial^4\delta}{\partial x^4} + \rho A\frac{\partial^2\delta}{\partial t^2} = P(x,t) \qquad \dots (4)$$

Dengan ρ adalah nilai *density* material, dan Amerupakan *cross section area* (A = w t). Untuk mengubah persamaan differensial parsial menjadi persamaan differensial terhadap nilai x saja, kita mengasumsikan sebuah gaya input harmonik yang diberikan ke sistem dengan nilai frekuensi radial (ω), sehingga nilai P(x, t) = $Pe^{i\omega t}$ dan $\delta(x, t) = \delta e^{i\omega t}$. Persamaan 4 dapat disederhanakan dengan menghilangkan faktor $e^{i\omega t}$, sehingga menjadi [5]:

$$EI(1+i\gamma)\frac{\partial^4\delta}{\partial x^4} + \rho A\delta\omega^2 = P \quad \dots (5)$$

Dengan $(1 + i\gamma)$ merupakan nilai konstanta dari faktor *structural damping* pada saat proses vibrasi dan *strain* yang terjadi pada mikrokantilever.

Nilai frekuensi resonansi yang terjadi dipengaruhi oleh massa dan faktor nilai regangan (*spring constant*) dari property mikrokantilever yang digunakan [6].

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{M+m}} \qquad \dots (6)$$

$$k = \frac{3EI}{l^3} = \frac{3Ewt^3}{12l^3} = \frac{Ewt^3}{4l^3} \qquad \dots (7)$$

DenganMadalahmassaobyek yang terdeteksipadapermukaanmikrokantileverdan madalahmassaefektifmikrokantilever ($m = \rho Al = \rho wtl$) [7]. Denganmenambahkanmassa, perubahanfrekuensiresonansi (Δf) inimenyebabkanturunnyanilaifrekuensidanperu bahanmassa (Δm) dapatdiketahui. Pendekatandapatdilihatpadapersamaanberikut [8].

$$\Delta f = f\left(\sqrt{\frac{1}{\frac{\Delta m}{m}+1}-1}\right) \qquad \dots (8)$$

Pada riset ini dilakukan perancangan pengukuran mikrokantilever, khususnya simulasi perubahan nilai defleksi $(\Delta \delta)$ dan perubahan frekuensi resonansi (Δf) pada permukaan *piezoresistance* mikrokantilever.

Metode Penelitian

Riset akan fokus pada pengukuran dan simulasi perubahan defleksi $(\Delta\delta)$ serta perubahan frekuensi resonansi (Δf) pada mikrokantilever terhadap perubahan massa obyek (Δm) yang terdeteksi di permukaan mikrokantilever. Pengukuran dilakukan menggunakan teknik wheatstone bridge dan penguat amplifier INA 128. Simulasi perubahan frekuensi resonansi dilakukan berbasis Persamaan Euler-Bernoulli Beam, dan simulasi secara numerik menggunakan pendekatan dengan pemrograman di MATLAB.

Hasil Pengukuran ΔV dan ΔR

defleksi Eksperimen pengukuran mikrokantilever ini dilakukan dengan menggunakan komponen potensiometer dan resistor sebagai pengganti mikrokantilever. Hal ini dilakukan karena komponen penggetar (vibrator) mikrokantilever mengalami kerusakan dan potensiometer dianggap dapat menggantikan fungsi piezoresistive mikrokantilever. Data yang didapat pada eksperimen ini mengacu kepada rangkaian wheatstone *bridge* yangdigunakan untuk menghitung perubahan nilai resistansi dan perubahan tegangan, seperti pada Gambar 5. Komponen R₁ dan R₂ merupakan *piezoresistive* terdapat didalam mikrokantilever. vang Komponen R₃, R₄ dan R₅ merupakan resistor eksternal yang terdapat pada rangkaian penguat amplifier INA128.

Hasil eksperimen yang didapat dengan beberapa ketentuan, antara lain Nilai R_1 di-set mendekati nilai $R=630 \ \Omega$ dan V_{out} di-set menjadi nol. Setelah didapat nilai $V_{out} = 0$, kemudian diukur nilai V_{out} untuk semua nilai R_1 seperti yang terlihat pada Tabel1. Selain itu, sebagai perbandingan dilakukan perhitungan nilai ΔV dan ΔR menggunakan Persamaan 9 [9] dan Persamaan 10 [9].

Seminar Nasional Sains dan Teknologi 2014 Fakultas Teknik Universitas Muhammadiyah Jakarta , 12 November 2014

$$V = \frac{R_1 R_3 - R_2 R_X}{(R_3 + R_X)(R_1 + R_2)} E \qquad \dots (9)$$

$$V = \frac{R}{2R}E \qquad \dots (10)$$

Pada riset ini, dilakukan pengamatan terhadap nilai R1 dan ΔV . Hasil percobaan ditunjukkan oleh Tabel 1 dan Gambar 6, sedangkan hasil perhitungan ditunjukkan pada Tabel 2 dan Gambar 7.

Tabel 1. Hasil Eksperimen Pengukuran ΔV

R ₁ (Ω)	V _{out} (Volt)	ΔV (Volt)	ΔR (Ω)	ΔR+R (Ω)
1	14.26	3.43	-626.35	3.65
183	13.88	3.06	-558.78	71.22
275	9.45	1.82	-332.35	297.65
480	6.02	1.16	-211.83	418.17
615	2.50	0.48	-87.65	542.35
685	0.00	0.16	-29.22	600.78
714	-1.04	-0.15	27.39	657.39
777	-2.42	-0.46	84.00	714.00
905	-3.61	-0.69	126.00	756.00
959	-4.11	-0.79	144.26	774.26

Gambar 6 menunjukkan titik pertemuan antara R_1 dan ΔV terjadi pada titik (480, 1.16).

Gambar 6. Hasil Eksperimen Pengukuran ΔV

R1 (Ω)	V _{out} (Volt)	∆V (Volt)	ΔR (Ω)	ΔR+R (Ω)	
1	24.289	3.520	-642.798	-12.798	
183	13.647	1.978	-361.178	268.822	
275	9.897	1.434	-261.922	368.078	
480	3.776	0.547	-99.930	530.070	
615	0.846	0.123	-22.385	607.615	
685	-0.437	-0.063	11.555	641.555	
714	-0.929	-0.135	24.580	654.580	
777	-1.928	-0.279	51.026	681.026	
905	-3.706	-0.537	98.072	728.072	
959	-4.370	-0.633	115.646	745.646	

Tabel 2. Hasil Perhitungan ΔV

Gambar 7 menunjukkan titik pertemuan antara R_1 dan ΔV terjadi pada titik (275, 1.434).

Gambar 7. Hasil Perhitungan ΔV

Hasil Simulasi MATLAB

Gambar 8.Defleksi Massa 0,3 dan 0,6 pg

Nilai defleksi pada mikrokantileverdapat ditentukan dengan menggunakan Persamaan Euler-Bernoulli Beam. Pada simulasi numerik ini, menggunakan MATLAB, diasumsikan massa yang terdeteksi adalah 0,3 pg. Untuk melihat perubahan defleksi ($\Delta\delta$) dan perubahan frekuensi resonansi (Δf) , maka akan disimulasikan menggunakan massa untuk 0,3 pg dan 0,6 pg seperti terlihat pada Gambar 8.Dari Gambar 8 terlihat bahwa perubahan massa (Δm) menyebabkan perubahan nilai frekuensi (sumbu X) dan perubahan nilai defleksi (sumbu Y). Pada saat massa yang terdeteksi adalah 3 pg, terjadi perubahan nilai frekuensi resonansi (Δf) sebesar 118,90 kHz dan perubahan nilai defleksi ($\Delta \delta$) sebesar 3,0536x10⁻¹¹ m. Sedangkan pada saat massa adalah 6 pg, perubahan yang terdeteksi

TE-001

frekuensi resonansi (Δf) yang terjadi sebesar 118,85 kHz dan perubahan nilai defleksi ($\Delta \delta$) sebesar 3,0539x10⁻¹¹ m.

Analisa terhadap hasil grafik yang dihasilkan terlihat bahwa dengan bertambahnya massa yang terdeteksi pada permukaan mikrokantilever, maka akan menurunkan nilai frekuensi resonansi dan meningkatkan nilai defleksi pada mikrokantilever

Kesimpulan

Hasilutamariset yang diperolehsebagaiberikut:

- 1. Telah dibuat rangkaian Wheatstone Bridge untuk mendeteksi defleksi mikrokantilever. rangkaian telah dilakukan Dari ini eksperimen dan dikonfirmasi rangkaian Dari bekerja dengan normal. proses pengukuran defleksi statis. terjadi persinggungan antara nilai ΔV dan nilai $\Delta R+R$ pada saat nilai resistansi 480 Ω . Sedangkan pada proses perhitungan terjadi persinggungan antara ΔV dan nilai $\Delta R+R$ pada saat nilai resistansi 275 Ω. Perbedaan ini disebabkan mungkin karena toleransi komponen vang digunakan terutama komponen resistor dan tingkat kepresisian alat ukur yang kurang baik.
- 2. Dari proses perhitungan defleksi statis, satu massa obyek akan menghasilkan nilai ΔV sebesar - 2.731591 Volt, sedangkan untuk empat massa akan menghasilkan nilai ΔV sebesar -2.731503 Volt. Data ini mengindikasikan bahwa dengan bertambahnya massa obyek menyebabkan kenaikan nilai tegangan ΔV .
- 3. Pada simulasi pengukuran defleksi, satu massa obyek akan menyebabkan nilai defleksi sebesar 0,30535 pm dan nilai frekuensi resonansi sebesar 118,90 kHz. Sedangkan untuk massa obyek yang lebih besar (misal: 4 kali massa obyek) akan menyebabkan nilai defleksi sebesar 0,30544 pm dan nilai frekuensi resonansi sebesar 118,68 kHz.

Referensi

- [1] NardoRamírezFrómeta. 2006. *Cantilever Biosensors*. BiotecnologíaAplicada Vol.23, No.4.
- [2] Sandeep Kumar Vashist. 2007. A Review of Microcantilevers for Sensing Applications. Azojono Journal of Nanotechnology Online. Vol.3. June 2007.
- [3] Yang-Choon Lim, Abbas Z. Kouzani, Wei Duan, and AkifKaynak. 2010. Effects of Design Parameters on Sensitivity of Microcantilever Biosensors. The 2010 IEEE/ICME International Conference on Complex Medical Engineering July 13-15, 20 I 0, Gold Coast, Australia.
- [4] ADVANCEPIPELINER. Beam Deflection *Formulae*.
- [5] Chen Kim Yew and Dr Lim Kian Meng (Supervisor). 2004. Design and Analysis of Sensor Array. Bachelor of Engineering -National University of Singapore.
- [6] Ben Ohler, Ph.D., Veeco Instruments Inc. Practical Advice on the Determination of Cantilever Spring Constants. pp. 1-11.
- [7] Thomson, W.T. 2007. Free Vibrations Of A Cantilever Beam (Single Degree Of Freedom System). Kindersley Publishing, Inc., London.
- [8] M. Maroufi, Sh. Zihajehzadeh, M. Shamshirsaz, A.H. Rezaie. 2010. Effect of Mechanical Properties Variation of Polysilicon on Microcantilever Mass Sensor Sensitivity. EDA Publishing/DTIP 2010, pp. 144-147. ISBN: 978-2-35500-011-9.
- [9] Hayato SONE, Haruki OKANO and Sumio HOSAKA. 2004. Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever. Japanese Journal of Applied Physics Vol. 43, No. 6A, 2004, pp. 3648– 3651.