ANALISA PERANCANGAN RUANG BAKAR PADA PEMBANGKIT LISTRIK MIKRO TURBIN GAS BAHAN BAKAR LPG

Rudi Hermawan, Eko Prasetyo, Damora Rhakasiwi, Agung Hartanto, Erlanda Pane

Abstract


Penelitian ini dilakukan untuk merancang dan menganalisis kinerja sistem dari turbin gas mikro (MGT) terutama pada bagian ruang bakar dengan tambahan sistem kompresor turbocharge. Turbin gas mikro merupakan salah satu teknologi renewable energy untuk memenuhi kebutuhan energi yang berkembang saat ini. Metode penelitian ini melalui dua tahapan yaitu tahapan perancangan dengan menggunakan siklus Brayton ideal dan aktual serta analisis dengan simulasi Computational Fluid Dynamics (CFD). Hasil perancangan mendapatkan ukuran dimensi ruang bakar dengan diameter sebesar 92.7 mm, dan panjang sebesar 0.568 m. Hasil efisiensi siklus Brayton ideal sebesar 63.4%, dan aktual sebesar 34.7%. Suhu dan tekanan gas masuk ke turbin dari ruang bakar sebesar 1223 K dan 2.68 bar, sedangkan kondisi keluar turbin sebesar 911.04K dan 1.1145 bar. Hasil analisis simulasi CFD meliputi penyebaran suhu di ruang bakar sebesar 305.870C, Mach number sebesar 0, dan analisis statik ruang bakar (pressure stress sebesar 1.233 x 108 N/m2, pressure displacement sebesar 0.05 mm, dan pressure factor of safety sebesar 1.26). Tingkat optimasi belum tercapai sehingga rekomendasi untuk pergantian sistem turbocharge untuk ke depannya dengan spesifikasi yang disesuaikan dengan sistem turbin gas mikro perlu diperhitungkan.


Full Text:

PDF

References


Ali, U., Palma, C.F., Hughes, K.J., Ingham, D.B., Ma, L., Pourkashanian, M., 2015. Thermodynamic analysis and process system comparison of the exhaust gas recirculated, steam injected and humidified micro gas turbine, Turbine Technical Conference and Exposition. GT2015-42454, Proceedings of ASME Turbo Expo 2015, Montreal, Canada.

Bauerhim, M., Nicoud, F. & Poinsot, T. 2014. Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers. Combustion and Flame.

Cengel, Y. & Michael, B. 2006. Thermodynamics An Engineering Approach.Fifth Edition. New York: McGraw-Hill.

Dani, M. & Effendi, N.2000.The Effect of The Reactive Element On The Chromoxide and Aluminide Layers In The High Temperature Condition. Mikroskopi dan Mikroanalisis, (3) : 9-12.

Dekrit Presiden No.5 tahun 2016

De Paepe, W., Delattin, F., Bram, S. & De Ruyck. 2012. Steam injection experiments in a microturbine- A thermodynamic performance analysis. Applied Energy, (97): 569-576.

Duan, J., Fan, S., An, Q., Sun, L. & Wang, G. 2017. A comparison of micro gas turbine operation modes for optimal efficiency based on a nonlinear model. Energy, 134(1) : 400-411.

Enagi, I., Al-attab, K.A. & Zainal, Z.A. 2017. Combustion chamber design and performance for micro gas turbine application.Fuel Processing Technology, (166): 258-268.

Kusnadi., Arifin, M., Darussalam, R. & Rajani, A.2016.Rancangan Mikro Gas Turbin Berbahan Bakar Biogas Untuk Pembangkit Tenaga Listrik Biomass

Berkapasitas 2.5 kW, Studi Kasus : Ciparay Bandung. Prosiding Seminar Nasional Fisika (E-Journal) SNF 2016, (5): 67-72.

K.Zhang., A. Ghobadian. & J.M.Nouri. 2017. Comparative study of non-premixed and partially premixed combustion simulations in a realistic tay model combustor. Applied Thermal Engineering, (110) : 910-920.

Levebre, H.A. & Dilip, R.B.2010. Gas Turbine Combustion Alternative Fuels and Emissions Third Edition. New York: CRC Press.

Li, Shichun., Deng, Z., Deng, H. & Xu, W. 2017.Microstructure and Properties of Weld Joint During 10kW Laser Welding with Surface-Active Element Sulfur. Accept Manuscript Journal of Applied Surface Science.

Majoumered,M.M., Somehsaraei, H.N., Assadi, M. & Breuhaus, P., 2014. Micro gas turbine configurations with carbon capture-performance assessment using a validated thermodynamic model. Applied Thermal Engineering. 73(1) : 172-184.

M.M. Noor., A.P. Wandel. & T.Yusaf. 2013. Design and development of mild combustion burner. Mechanical Engineering Science, (5) : 662-676.

Nikpey, H., Assadi, M., Breuhaus, P. & Mørkved.2014. Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas. Applied Energy, (117) : 30-41.

Ofualagba, G. 2012. The modelling and simulation of a micro turbine generation system. International Journal of Science Engineering, (2) : 1-7.

Ortega, Alfonso., Hernandez, A., Puello, J. & Marin-Batista, J. 2017. Effect of Liquefied Petroleum Gas (LPG) on Heavy Oil Recovery Process. Chemical Engineering Transactions, (57) : 1297-1302.

Rahman, M. & Anders Malmquist. 2016. Modeling and simulation of an externally fired micro-gas turbine for standalone polygeneration application. Engineering Gas Turbine Power, (138) : 1-15.

Raslavicius, L., Kersys, A., Mockus, S., Kersiene, N. & Starevicius, M. 2016. Liquified Petroleum Gas (LPG) as a medium-term option in the transition to sustainable fuels and transport. Renewable and Sustainable Energy Reviews, (32) : 513-525.

Siswantara, A.I., Asyari Daryus., Steven Darmawan., Gunadi, G.G.R. & Rovida, C. 2015. Analisis unjuk kerja sistem turbin gas mikro bioenergi proto x-3 berbahan bakar LPG. Makalah disajikan dalam Seminar Nasional Tahunan Teknik Mesin XIV (SNTM XIV), Banjarmasin, 7-8 Oktober.

Vick, M.J. 2012. High efficiency recuperated ceramic gas turbine engines for small unmanned air vehicle propulsion. Tesis tidak diterbitkan. London : Imperial College London

Xiao, G., Tiangfeng, Yang., Huanlei, Lu et al. 2017. Recuperators for micro gas turbines : A review. Applied Energy, (197) : 83-99.


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ