Pengembangan Sintesis Enzimatis Sukrosa Ester Menggunakan Substrat Metil Ester Dan Potensinya Sebagai Senyawa Anti Bakteri
Abstract
Kata kunci: Anti Bakteri, Escherichia coli, Lipase, Metil Ester, Sukrosa Ester
Full Text:
PDFReferences
Abdulmalek, E., Hamidon, N. F., & Abdul
Rahman, M. B. (2016). Optimization and
characterization of lipase-catalyzed
synthesis of xylose caproate ester in
organic solvents. Journal of Molecular
Catalysis B: Enzymatic, 132, 1–4.
https://doi.org/10.1016/j.molcatb.2016.06.
Adnani, A., Basri, M., Chaibakhsh, N., Ahangar,
H. A., Salleh, A. B., Rahman, R. N. Z. R.
A., & Abdul Rahman, M. B. (2011).
Chemometric analysis of lipase-catalyzed
synthesis of xylitol esters in a solvent-free
system. Carbohydrate Research, 346 (4),
-479.
https://doi.org/10.1016/j.carres.2010.12.02
Andrés, J., Vargas, M., Orduña, J., Metzker, G.,
Eliecer, J., & Boscolo, M. (2020).
Phytochemistry Natural Sucrose Esters :
Perspectives on The Chemical And
Physiological Use Of An Under
Investigated Chemical Class Of
Compounds. Phytochemistry, 177, 112433.
https://doi.org/10.1016/j.phytochem.2020.
AOCS. (1998). Official Methods And
Recommended Practices of The AOCS (6th
ed.). American Oil Chemist Society.
Bidjou-Haiour, C., & Klai, N. (2013). Lipase
catalyzed the synthesis of fatty acid xylose
esters and their surfactant properties.
Asian Journal of Chemistry,25(8), 4347-
https://doi.org/10.14233/ajchem.201
13973
Bouzaouit, N., & Bidjou-Haiour, C. (2016).
Response Surface Methodological Study of
Glucose Laurate Synthesis Catalyzed by
Immobilized Lipase from Candida
cylindracea. Biological Forum-An
International Journal, Vo.8(1), 420–427.
www.researchtrend.net
Claverie, V. et. al. (2004). United States Patent
About Method For Producing
Carbohydrate Partial Ester (Patent US
706.877.81).
Ferrer, M., Cruces, M. A., Plou, F. J., Pastor, E.,
Fuentes, G., Bernab6, M., Parra, J. L., &
Ballesteros, A. (2000). Chemical Versus
Enzymatic Catalysis for The Regioselective
Synthesis of Sucrose Esters of Fatty Acids.
Studies in Surface Science and Catalysis
Elsevier Science B.V. All Rights
Reserved., 509–514.
Fitremann, J., Queneau, Y., Maître, J. P., &
Bouchu, A. (2007). Co-melting of Solid
Sucrose and Multivalent Cation Soaps for
Solvent-free Synthesis of Sucrose Esters.
Tetrahedron Letters, 48(23), 4111-4114.
https://doi.org/10.1016/j.tetlet.2007.04.01
Godtfredsen, S. E. (1993a). Lipases. In Enzymes
in Food Processing (3th, pp. 205-219).
Academic Press Inc.
https://doi.org/10.1016/b978-0-08-
-4.50015-3
Gumel, A. M., Annuar, M. S. M., Heidelberg, T.,
& Chisti, Y. (2011). Lipase mediated
synthesis of sugar fatty acid esters. In
Process Biochemistry (Vol. 46, Issue 11,
pp. 2079–2090).
https://doi.org/10.1016/j.procbio.2011.07.
Habulin, M., Šabeder, S., & Knez, Ž. (2008).
Enzymatic synthesis of sugar fatty acid
esters in organic solvent and in
supercritical carbon dioxide and their
antimicrobial activity. Journal of
Supercritical Fluids, 45(3), 338–345.
https://doi.org/10.1016/j.supflu.2008.01.0
He, W. Sen, Cui, D. D., Zhang, Y. L., Liu, Y.,
Yin, J., Chen, G., Jia, C. S., & Feng, B.
(2017). Highly efficient synthesis of
phytosterol linoleate catalyzed by Candida
rugosa lipase through transesterification.
Food Science and Technology Research,
(4), 525–533.
https://doi.org/10.3136/fstr.23.525
Hidayat, H. (2015). Identifikasi Morfologi Dan
Uji Aktivitas Antimikroba Terhadap
Bakteri Escherichia Coli Dari Fermentasi
Buah Markisa (Passiflora Sp.). Jurnal
Eksakta, 15(1–2), 75–84.
https://doi.org/10.20885/eksakta.vol14.iss
-2.art8
Inprakhon, P., Wongthongdee, N.,
Amornsakchai, T., Pongtharankul, T.,
Sunintaboon, P., Wiemann, L. O., Durand,
A., & Sieber, V. (2017). Lipase-catalyzed
synthesis of sucrose monoester: Increased
productivity by combining enzyme
pretreatment and non-aqueous biphasic
medium. Journal of Biotechnology, 259,
–190.
https://doi.org/10.1016/j.jbiotec.2017.07.0
Iriawan, Nur dan Astuti, P. S. (2006). Mengolah
Data Statistik Dengan Mudah
Menggunakan Minitab 14 (O. H.
Sudiyarto, Ed.; Edisi 1). Andi Offsheet.
Jia, C., Zhao, J., Feng, B., Zhang, X., & Xia, W.
(2010). A simple approach for the selective
enzymatic synthesis of dilauroyl maltose in
organic media. Journal of Molecular
Catalysis B: Enzymatic, 62(3–4), 265–269.
https://doi.org/10.1016/j.molcatb.2009.11.
Khairunnida, G. R., Rusmini, H., Maharyuni, E.,
& Warganegara, E. (2020). Identifikasi
Escherichia coli Penyebab Waterborne
Disease pada Air Mimun Kemasan dan Air
Mimunm Isi Ulang. Jurnal Ilmiah
Kesehatan Sandi Husada, 12(2), 634–639.
https://doi.org/10.35816/jiskh.v12i2.370
Kurniasih, E., Rahmi, R., Darusman, D., &
Supardan, M. D. (2023). Synthesis of
sucrose ester through enzymatic
esterification and stability analysis as a
food emulsifier. E3S Web of Conferences,
, 1–9.
https://doi.org/10.1051/e3sconf/20233730
Lioe, H. N., & Fadhilah, A. (2020). Formulasi
Campuran Bahan Pengemulsi untuk Bolu
Sponge Mixed Emulsifier Formula in
Sponge Cake. 7(1), 7–13.
https://doi.org/10.29244/jmpi.2020.7.1.7
Manley, C., & Mayer, J. (2012). Lipase. Clinical
Veterinary Advisor: Birds and Exotic Pets,
–625. https://doi.org/10.1016/B978-1-
-3969-3.00364-4
Marathe, S. J., Shah, N. N., & Singhal, R. S.
(2020). Enzymatic synthesis of fatty acid
esters of trehalose: Process optimization,
characterization of the esters and
evaluation of their bioactivities.
Bioorganic Chemistry, 94.
https://doi.org/10.1016/j.bioorg.2019.1034
Marciello, M., Mateo, C., & Guisan, J. M.
(2011). Full enzymatic hydrolysis of
commercial sucrose laurate by
immobilized-stabilized derivatives of
lipase from Thermomyces lanuginosa.
Colloids and Surfaces B: Biointerfaces,
(2), 556–560.
https://doi.org/10.1016/j.colsurfb.2011.02.
Mitsubishi-Kagaku Food Corporation. (2022,
August 25). Various Applications Of Sugar
Esters To Foods.
https://Www.Mfc.Co.Jp/English/Infor.Ht
m.
Ortiz, C., Ferreira, M. L., Barbosa, O., Dos
Santos, J. C. S., Rodrigues, R. C.,
Berenguer-Murcia, Á., Briand, L. E., &
Fernandez-Lafuente, R. (2019). Novozym
: The “perfect” lipase immobilized
biocatalyst. Catalysis Science and
Technology, 9 (10), 2380–2420.
https://doi.org/10.1039/c9cy00415g
Pérez, B., Anankanbil, S., & Guo, Z. (2017).
Synthesis of Sugar Fatty Acid Esters and
Their Industrial Utilizations. In Fatty
Acids (pp. 329–354). Elsevier.
https://doi.org/10.1016/b978-0-12-809521-
00010-6
Ren, K., & Lamsal, B. P. (2017). Synthesis of
some glucose-fatty acid esters by lipase
from Candida antarctica and their
emulsion functions. Food Chemistry, 214,
–563.
https://doi.org/10.1016/j.foodchem.2016.0
031
Šabeder, S., Habulin, M., & Knez, Ž. (2006).
Lipase-catalyzed synthesis of fatty acid
fructose esters. Journal of Food
Engineering, 77(4), 880–886.
https://doi.org/10.1016/j.jfoodeng.2005.08
.016
Sari, D. M., Andarwulan, N., & Fardiaz, D.
(2019). Profil Komposisi BTP Campuran,
Pelabelan, dan Penggunaannya pada
Industri Rumah Tangga Pangan (IRTP) di
DKI Jakarta. Jurnal Mutu Pangan :
Indonesian Journal of Food Quality, 6(1),
–45.
https://doi.org/10.29244/jmpi.2019.6.38
PPKS. (2004). Intruksi Kerja Pengujian Fisika
Kimia Minyak. Pusat Penelitian Kelapa
Sawit, Medan
Shin, D. W., Mai, N. L., Bae, S. W., & Koo, Y.
M. (2019). Enhanced lipase-catalyzed
synthesis of sugar fatty acid esters using
supersaturated sugar solution in ionic
liquids. Enzyme and Microbial
Technology, 126, 18–23.
https://doi.org/10.1016/j.enzmictec.2019.0
004
Smidrkal, J., Cervenkova, R., & Filip, V. (2004).
Two-Stage Synthesis of Sorbitan Esters,
and Physical Properties of the Products.
European Journal of Lipid Science and
Technology, 106(12), 851–855.
https://doi.org/10.1002/ejlt.200401003
Sudrajat, S., Sadani, S., & Sudiastuti, S. (2012).
Analisis Fitokimia Senyawa Metabolit
Sekunder Ekstrak Kasar Etanol Daun
Meranti Merah (Shorea leprosula Miq.)
dan Sifat Antibakterinya terhadap
Staphylococcus aureus dan Eschericia
coli. Journal of Tropical Pharmacy and
Chemistry, 1(4), 303–311.
https://doi.org/10.25026/jtpc.v1i4.41.
Susanti, R., & Febriana, F. (2017). Buku Enzim
Lengkap. Penerbit Andi Offsheet
Teng, Y., Stewart, S. G., Hai, Y. W., Li, X.,
Banwell, M. G., & Lan, P. (2021). Sucrose
fatty acid esters: synthesis, emulsifying
capacities, biological activities, and
structure-property profiles. In Critical
Reviews in Food Science and Nutrition
(Vol. 61, Issue 19, pp. 3297–3317). Taylor
and Francis Ltd.
https://doi.org/10.1080/10408398.2020.17
Vijai Kumar Reddy, T., Sandhya Rani, G.,
Prasad, R. B. N., & Prabhavathi Devi, B. L.
A. (2015). Green recyclable SO3H-Carbon
Catalyst for The Selective Synthesis of
Isomannide-based Fatty Acid Monoesters
as Non-Ionic Bio-surfactants. RSC
Advances, 5(51), 40997–41005.
https://doi.org/10.1039/c5ra03605d
Wahyuni, S. (2017). Biokimia Enzim Dan
Karbohidrat. Universitas Malikul Saleh
Press.
Wulandari, A, dan Kurniasih, E. (2020). Potensi
Sukrosa Ester Nabati (SENA) Sebagai Anti
Mikroba Staphylococcus aureus dan
Escherichia Coli. Jurnal Teknik Dan
Teknologi Baristand, 15 (30).
Yu, J., Zhang, J., Zhao, A., & Ma, X. (2008).
Study of Glucose Ester Synthesis by
Immobilized Lipase From Candida sp.
Catalysis Communications, 9(6), 1369–
https://doi.org/10.1016/j.catcom.2007.11.0
Zeng, D., Cai, Y., Liu, T., Huang, L., Liu, P.,
Zhao, M., & Zhao, Q. (2021). Effect of
sucrose ester S370 on interfacial layers
and fat crystals network of whipped cream.
Food Hydrocolloids, 106541.
https://doi.org/10.1016/j.foodhyd.2020.10
Zhao, L., Zhang, H., Hao, T., & Li, S. (2015). In
vitro antibacterial activities and
mechanism of sugar fatty acid esters
against five food-related bacteria. Food
Chemistry, 187, 370–377.
https://doi.org/10.1016/j.foodchem.2015.0
108
Refbacks
- There are currently no refbacks.
==============================================================================================================
Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023
ISSN : 2407 – 1846
e-ISSN : 2460 – 8416
==============================================================================================================