A Review : Optimalisasi Sisa Tanaman Hiperakumulator: Pemanfaatan dan Pengelolaan Biomassa Logam Berat Pasca-Fitoremediasi

Siti Jamilatun, Nurmustaqimah Nurmustaqimah, Erna Astuti, Aster Rahayu

Abstract


Urbanisasi dan industrialisasi yang pesat meningkatkan risiko polusi logam berat, mengakibatkan dampak ekologis yang merugikan dan klasifikasi sebagai polutan utama. Logam berat seperti kadmium, kromium, merkuri, arsenik, timbal, dan seng tidak dapat terurai secara alami, menyebabkan tanah tidak cocok untuk pertanian. Fitoremediasi, dengan menggunakan tanaman hiperakumulator, muncul sebagai solusi untuk mengatasi kontaminasi logam berat, tetapi menghadapi tantangan polusi sekunder dari pelepasan ulang kontaminan oleh biomassa tanaman. Review ini mengevaluasi metode perlakuan pasca-fitoremediasi, termasuk perlakuan panas (insinerasi, pirolisis, dan gasifikasi), ekstraksi (dengan agen seperti amonium asetat dan amonium oksalat), pengomposan, dan pemadatan. Meskipun perlakuan panas efektif dalam menghilangkan logam berat, diperlukan penelitian lebih lanjut mengenai efisiensi dan pemulihan logam berat. Pengomposan, meskipun mengurangi volume biomassa, memiliki risiko remobilisasi logam berat. Pemadatan, sebagai alternatif, melibatkan tekanan untuk memadatkan biomassa tanaman. Pemilihan metode perlakuan harus mempertimbangkan efisiensi, biaya, dan dampak lingkungan. Kesadaran akan potensi polusi sekunder dan pengelolaan limbah hasil dari perlakuan sangat penting untuk keberlanjutan upaya remediasi logam berat. Diperlukan penelitian lanjutan dalam pengembangan teknologi pasca-fitoremediasi dan pemantauan lingkungan untuk mendukung keberlanjutan upaya remediasi logam berat.
Kata kunci: Limbah, Biomassa, Logam berat, Lingkungan, Fitoremediasi


Full Text:

PDF

References


Bernal, M. P., Gómez, X., Chang, R., Arco-Lázaro, E., & Clemente, R. (2019). Strategies for the use of plant biomass obtained in the phytostabilisation of trace-element-contaminated soils. Biomass and Bioenergy, 126, 220–230.

Cui, X., Lu, M., Khan, M. B., Lai, C., Yang, X., He, Z., Chen, G., & Yan, B. (2020). Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Waste Management, 102, 106–113.

Cui, X., Shen, Y., Yang, Q., Kawi, S., He, Z., Yang, X., & Wang, C.-H. (2018). Simultaneous syngas and biochar production during heavy metal separation from Cd/Zn hyperaccumulator (Sedum alfredii) by gasification. Chemical Engineering Journal, 347, 543–551.

Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y., Yan, B., Li, T., He, Z., & Yang, X. (2021). A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials, 405, 123832.

Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y., Yan, B., Li, T., He, Z., Yang, X., & Chen, G. (2021). A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials, 405, 123832. https://doi.org/10.1016/j.jhazmat.2020.123832

Dai, L., Wu, B., Tan, F., He, M., Wang, W., Qin, H., Tang, X., Zhu, Q., Pan, K., & Hu, Q. (2014). Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresource Technology, 161, 327–332.

DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: state of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412.

Delil, A. D., Köleli, N., Dağhan, H., & Bahçeci, G. (2020). Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environmental Technology & Innovation, 17, 100559.

Deng, Z. , Y. J. , L. J. , Z. X. (2018). Removal of heavy metals and upgrading crude bio-oil from Phytolacca Americana L. harvest using hydrothermal upgrading process. Chin. J. Environ, 3919–3926.

Duan, L., Li, X., Jiang, Y., Lei, M., Dong, Z., & Longhurst, P. (2017). Arsenic transformation behaviour during thermal decomposition of P. vittata, an arsenic hyperaccumulator. Journal of Analytical and Applied Pyrolysis, 124, 584–591.

Edgar, V.-N., Fabián, F.-L., Mario, P.-C. J., & Ileana, V.-R. (2021). Coupling plant biomass derived from phytoremediation of potential toxic-metal-polluted soils to bioenergy production and high-value by-products—A review. Applied Sciences, 11(7), 2982.

Fu, Y., You, S., & Luo, X. (2021). A review on the status and development of hyperaccumulator harvests treatment technology. IOP Conference Series: Earth and Environmental Science, 634(1), 012113.

Hasan, Md. M., Uddin, Md. N., Ara-Sharmeen, I., F. Alharby, H., Alzahrani, Y., Hakeem, K. R., & Zhang, L. (2019). Assisting Phytoremediation of Heavy Metals Using Chemical Amendments. Plants, 8(9), 295. https://doi.org/10.3390/plants8090295

Jian‐guang, Y., Zi‐xiang, D., Jun‐yuan, L., & Xu‐liang, Z. (2014). Removal of Heavy Metals and Upgrading Crude Bio‐Oil from Pteris Vittata Stems and Leaves Harvest Using Hydrothermal Upgrading Process. EPD Congress 2014, 137–149.

Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.

Kovacs, H., & Szemmelveisz, K. (2017). Disposal options for polluted plants grown on heavy metal contaminated brownfield lands–a review. Chemosphere, 166, 8–20.

Li, J., Chen, J., & Chen, S. (2018). Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicology and Environmental Safety, 157, 102–110.

Liu, J., Kang, H., Tao, W., Li, H., He, D., Ma, L., Tang, H., Wu, S., Yang, K., & Li, X. (2023). A spatial distribution–Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Science of The Total Environment, 859, 160112.

Liu, Z., Chen, B., Wang, L., Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138.

Liu, Z., Lu, B., He, B., Li, X., & Wang, L. (2019). Effect of the pyrolysis duration and the addition of zeolite powder on the leaching toxicity of copper and cadmium in biochar produced from four different aquatic plants. Ecotoxicology and Environmental Safety, 183, 109517.

Molaey, R., Yesil, H., Calli, B., & Tugtas, A. E. (2021). Enhanced heavy metal leaching from sewage sludge through anaerobic fermentation and air-assisted ultrasonication. Chemosphere, 279, 130548.

Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Vasudha Priyadharshini, S., Paramasivan, T., Dhakal, N., & Naushad, M. (2020). Research updates on heavy metal phytoremediation: enhancements, efficient post-harvesting strategies and economic opportunities. Green Materials for Wastewater Treatment, 191–222.

Oladoye, P. O., Olowe, O. M., & Asemoloye, M. D. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, 132555.

Qian, F., Zhu, X., Liu, Y., Shi, Q., Wu, L., Zhang, S., Chen, J., & Ren, Z. J. (2018). Influences of temperature and metal on subcritical hydrothermal liquefaction of hyperaccumulator: implications for the recycling of hazardous hyperaccumulators. Environmental Science & Technology, 52(4), 2225–2234.

Shah, V., & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774.

Song, Q., Sun, Z., Chang, Y., Zhang, W., Lv, Y., Wang, J., Sun, F., Ma, Y., Li, Y., & Wang, F. (2021). Efficient degradation of polyacrylate containing wastewater by combined anaerobic–aerobic fluidized bed bioreactors. Bioresource Technology, 332, 125108.

Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043.

Viaene, J., Van Lancker, J., Vandecasteele, B., Willekens, K., Bijttebier, J., Ruysschaert, G., De Neve, S., & Reubens, B. (2016). Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe. Waste Management, 48, 181–192.

Wen, X. B., Zhang, X. H., & Liu, J. (2018). A comparative study on the disposal of harvested products of Cr hyper-accumulator Leersia hexandra Swartz by incineration and pyrolysis. J. Industrial Safety and Environmental Protection, 44(03), 73–77.

Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils—a review. Journal of Hazardous Materials, 339, 354–367.

Zhu, Z., Huang, Y., Zha, J., Yu, M., Liu, X., Li, H., & Zhu, X. (2019). Emission and retention of cadmium during the combustion of contaminated biomass with mineral additives. Energy & Fuels, 33(12), 12508–12517.


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ