Analisis numerik pengaruh Cut Ratio terhadap kinerja perpindahan panas di dalam pipa penukar kalor dilengkapi Coaxial Cross Twisted Tape dengan V-Cut dan Center Clear

Shaleh Ahmad, Fauzun Fauzun

Abstract


Teknik peningkatan perpindahan panas telah menjadi fokus utama dalam upaya meningkatkan efisiensi sistem rekayasa melalui perubahan aliran fluida, geometri, dan karakteristik material. Twisted tape inserts telah diakui memiliki potensi besar dalam meningkatkan perpindahan panas konvektif dalam sistem perpindahan panas. Penelitian ini mengeksplorasi penggunaan twisted tape inserts dengan variasi struktur dan pemotongan untuk meningkatkan efisiensi perpindahan panas dalam pipa. Metode numerik menggunakan komputasi dinamika fluida (CFD) ANSYS-Fluent digunakan untuk menganalisis aliran fluida dan perpindahan panas dalam pipa dengan twisted tape inserts. Simulasi dilakukan dalam rentang bilangan Reynolds 4.000-9.000 dengan fluks panas yang konstan pada dinding pipa sebesar 6.000 W/m². Hasil simulasi numerik divalidasi dengan data eksperimental sebelumnya. Hasil menunjukkan bahwa twisted tape dengan rasio pemotongan 1,0 memiliki efisiensi termal maksimum sebesar 0,94 dan meningkatkan bilangan Nusselt hingga 1,2 kali lipat.
Kata kunci: Perpindahan Panas, Twisted Tape Inserts, Efisiensi Termal, Bilangan Nusselt, Komputasi Dinamika Fluida


Full Text:

PDF

References


Abed, A. M., Sh. Majdi, H., Hussein, Z., Fadhil, D., dan Abdulkadhim, A. (2018). Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape. Case Studies in Thermal Engineering, 12, 749–758. https://doi.org/10.1016/j.csite.2018.10.004

Bhattacharyya, S., K. Vishwakarma, D., Roy, S., Biswas, R., dan Moghimi Ardekani, M. (2020). Applications of Heat Transfer Enhancement Techniques: A State-of-the-Art Review. In Inverse Heat Conduction and Heat Exchangers. IntechOpen. https://doi.org/10.5772/intechopen.92873

Bhuiya, M. M. K., Chowdhury, M. S. U., Saha, M., dan Islam, M. T. (2013). Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. International Communications in Heat and Mass Transfer, 46, 49–57. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.012

Bucak, H., dan Yılmaz, F. (2020). The current state on the thermal performance of twisted tapes: A geometrical categorisation approach. Chemical Engineering and Processing - Process Intensification, 153, 107929. https://doi.org/10.1016/j.cep.2020.107929

C., R. B., P., K., Roy, S., dan Ganesan, R. (2022). A comprehensive review on compound heat transfer enhancement using passive techniques in a heat exchanger. Materials Today: Proceedings, 54, 428–436. https://doi.org/10.1016/j.matpr.2021.09.541

Cengel, Y., dan Ghajar, A. (2015). Heat and Mass Transfer: Fundamentals and Applications (5th ed.). McGraw Hill.

Dewan, A., Mahanta, P., Raju, K. S., dan Kumar, P. S. (2004). Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(7), 509–527. https://doi.org/10.1243/0957650042456953

Eiamsa-ard, S., dan Promvonge, P. (2010). Thermal characteristics in round tube fitted with serrated twisted tape. Applied Thermal Engineering, 30(13), 1673–1682. https://doi.org/10.1016/j.applthermaleng.2010.03.026

Frank M. White. (2016). Fluid Mechanics (8th ed.). McGraw-Hill Education.

Ghalambaz, M., Arasteh, H., Mashayekhi, R., Keshmiri, A., Talebizadehsardari, P., dan Yaïci, W. (2020). Investigation of Overlapped Twisted Tapes Inserted in a Double-Pipe Heat Exchanger Using Two-Phase Nanofluid. Nanomaterials, 10(9), 1656. https://doi.org/10.3390/nano10091656

Ghalambaz, M., Mashayekhi, R., Arasteh, H., Ali, H. M., Talebizadehsardari, P., dan Yaïci, W. (2020). Thermo-Hydraulic Performance Analysis on the Effects of Truncated Twisted Tape Inserts in a Tube Heat Exchanger. Symmetry, 12(10), 1652. https://doi.org/10.3390/sym12101652

Gupta, K., Singh, R. K., dan Tendolkar, M. V. (2020). Modified Twisted Tape Inserts: Significance of Geometric Non-dimensional Parameters (hal. 13–26). https://doi.org/10.1007/978-981-15-2647-3_2

He, Y., Liu, L., Li, P., dan Ma, L. (2018). Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts. Applied Thermal Engineering, 131, 743–749. https://doi.org/10.1016/j.applthermaleng.2017.12.029

Lim, K. Y., Hung, Y. M., dan Tan, B. T. (2017). Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger. Applied Thermal Engineering, 121, 652–661. https://doi.org/10.1016/j.applthermaleng.2017.04.134

Liu, S., dan Sakr, M. (2013). A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and Sustainable Energy Reviews, 19, 64–81. https://doi.org/10.1016/j.rser.2012.11.021

Liu, X., Li, C., Cao, X., Yan, C., dan Ding, M. (2018). Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer. International Journal of Heat and Mass Transfer, 121, 1125–1136. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052

Manikanta, R. V, Prabhakar, D. V. N., dan Shankar, N. V. S. (2017). Effect of Twisted Tape Insert On Heat Transfer During Flow Through A Pipe Using CFD. International Journal of Engineering Research and Science, 3(5), 58–63. https://doi.org/10.25125/engineering-journal-IJOER-MAY-2017-20

Maradiya, C., Vadher, J., dan Agarwal, R. (2018). The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 1–21. https://doi.org/10.1016/j.bjbas.2017.10.001

Mashoofi, N., Pourahmad, S., dan Pesteei, S. M. (2017). Study the effect of axially perforated twisted tapes on the thermal performance enhancement factor of a double tube heat exchanger. Case Studies in Thermal Engineering, 10, 161–168. https://doi.org/10.1016/j.csite.2017.06.001

Mogaji, T. S., Kanizawa, F. T., Bandarra Filho, E. P., dan Ribatski, G. (2013). Experimental study of the effect of twisted-tape inserts on flow boiling heat transfer enhancement and pressure drop penalty. International Journal of Refrigeration, 36(2), 504–515. https://doi.org/10.1016/j.ijrefrig.2012.10.008

Mogaji, T. S., Olapojoye, A. O., Idowu, E. T., dan Saleh, B. (2022). CFD study of heat transfer augmentation and fluid flow characteristics of turbulent flow inside helically grooved tubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(3), 90. https://doi.org/10.1007/s40430-021-03299-5

Mousavi Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., dan Urchueguia, J. F. (2022). A Review of Recent Passive Heat Transfer Enhancement Methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986

Murugesan, P., Mayilsamy, K., dan Suresh, S. (2010). Turbulent Heat Transfer and Pressure Drop in Tube Fitted with Square-cut Twisted Tape. Chinese Journal of Chemical Engineering, 18(4), 609–617. https://doi.org/10.1016/S1004-9541(10)60264-9

Murugesan, P., Mayilsamy, K., Suresh, S., dan Srinivasan, P. S. S. (2011). Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. International Communications in Heat and Mass Transfer, 38(3), 329–334. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.010

Nakhchi, M. E., dan Esfahani, J. A. (2019a). Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. International Journal of Thermal Sciences, 138, 75–83. https://doi.org/10.1016/j.ijthermalsci.2018.12.039

Nakhchi, M. E., dan Esfahani, J. A. (2019b). Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chemical Engineering and Processing - Process Intensification, 141, 107533. https://doi.org/10.1016/j.cep.2019.107533

Pawan A. Sawarkar; Pramod R. Pachghare; (2015). Experimental Analysis of Augmentation in Heat Transfer Coefficient Using Twisted Tape with Semi-Circular Cut Insert. International Journal of Science and Research (IJSR), 4(4), 1174–1179.

Piriyarungrod, N., Eiamsa-ard, S., Thianpong, C., Pimsarn, M., dan Nanan, K. (2015). Heat transfer enhancement by tapered twisted tape inserts. Chemical Engineering and Processing: Process Intensification, 96, 62–71. https://doi.org/10.1016/j.cep.2015.08.002

Ponweiser, K., Linzer, W., dan Malinovec, M. (2004). Performance Comparison Between Wire Coil and Twisted Tape Inserts. Journal of Enhanced Heat Transfer, 11(4), 359–370. https://doi.org/10.1615/JEnhHeatTransf.v11.i4.140

Rana, S., Zunaid, M., dan Kumar, R. (2021). CFD simulation for heat transfer enhancement in phase change materials. Materials Today: Proceedings, 46, 10915–10921. https://doi.org/10.1016/j.matpr.2021.02.006

Sarviya, R. M., dan Fuskele, V. (2018). Heat Transfer and Pressure Drop in a Circular Tube Fitted with Twisted Tape Insert Having Continuous Cut Edges. Journal of Energy Storage, 19, 10–14. https://doi.org/10.1016/j.est.2018.07.001

Saysroy, A., dan Eiamsa-ard, S. (2017). Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. International Journal of Thermal Sciences, 121, 55–74. https://doi.org/10.1016/j.ijthermalsci.2017.07.002

Saysroy, Anucha, dan Eiamsa-ard, S. (2017). Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts. Applied Thermal Engineering, 112, 895–910. https://doi.org/10.1016/j.applthermaleng.2016.10.154

Seemawute, P., dan Eiamsa-ard, S. (2010). Thermohydraulics of turbulent flow through a round tube by a peripherally-cut twisted tape with an alternate axis. International Communications in Heat and Mass Transfer, 37(6), 652–659. https://doi.org/10.1016/j.icheatmasstransfer.2010.03.005

Sharma, S. K., Vidya, S., dan Srikanth, K. S. (2023). CFD Analysis to Enhance the Heat Transfer Coefficient in Micro-Channels (hal. 589–597). https://doi.org/10.1007/978-981-16-9523-0_65

Sheikholeslami, M., Gorji-Bandpy, M., dan Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 49, 444–469. https://doi.org/10.1016/j.rser.2015.04.113

Thapa, S., Samir, S., Kumar, K., dan Singh, S. (2021). A review study on the active methods of heat transfer enhancement in heat exchangers using electroactive and magnetic materials. Materials Today: Proceedings, 45, 4942–4947. https://doi.org/10.1016/j.matpr.2021.01.382

Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, D. P. D. (2017). Fundamentals of Heat and Mass Transfer (8th ed.). Wiley.

Varun, Garg, M. O., Nautiyal, H., Khurana, S., dan Shukla, M. K. (2016). Heat transfer augmentation using twisted tape inserts: A review. Renewable and Sustainable Energy Reviews, 63, 193–225. https://doi.org/10.1016/j.rser.2016.04.051

Yaningsih, I., Wijayanta, A. T., Miyazaki, T., dan Koyama, S. (2018). V-cut twisted tape insert effect on heat transfer enhancement of single phase turbulent flow heat exchanger (hal. 030038). https://doi.org/10.1063/1.5024097

Yunus A. Çengel, John M. C. (2018). Fluid Mechanics: Fundamentals and Applications (4th ed.). McGraw-Hill Education.

Zimparov, V. D., Angelov, M. S., dan Petkov, V. M. (2022). Maximum benefits from the use of enhanced heat transfer surfaces. International Communications in Heat and Mass Transfer, 134, 105992. https://doi.org/10.1016/j.icheatmasstransfer.2022.105992


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ