Potensi Fly Ash dan Bottom Ash (FABA) sebagai Bahan Adsorben untuk Mengatasi Pencemaran Zat Warna Sintetis di Limbah Industri
Keywords:
zat pewarna, adsorpsi, adsorben, FABA, lingkunganAbstract
Pertumbuhan industri tekstil yang pesat telah menyebabkan peningkatan limbah cair yang mengandung zat pewarna sintetis. Zat pewarna ini dikenal sulit terurai serta berdampak negatif terhadap lingkungan dan kesehatan manusia. Berbagai metode pengolahan limbah telah dikembangkan, salah satunya adalah metode adsorpsi yang dinilai efisien dan ramah lingkungan. FABA yang merupakan limbah padat dari Pembangkit Listrik Tenaga Uap (PLTU), kini tidak lagi dikategorikan sebagai limbah B3 dan berpotensi dimanfaatkan sebagai material adsorben. Artikel ini mengkaji karakteristik FABA, efektivitasnya dalam mengadsorpsi zat pewarna, serta faktor-faktor yang memengaruhi kinerjanya. Hasil kajian menunjukkan bahwa FABA mampu menurunkan konsentrasi zat pewarna seperti Rhodamine B (RhB), Direct Blue 78 (DB 78), Crystal Violet (CV), dan Direct Fast Scarlet 4BS (DFC 4BS) secara signifikan, dengan efisiensi penyisihan mencapai lebih dari 90%. Pemanfaatan FABA sebagai adsorben tidak hanya menawarkan solusi pengolahan limbah cair industri yang lebih ekonomis dan berkelanjutan, tetapi juga berkontribusi terhadap pengurangan limbah padat PLTU. Kajian ini diharapkan dapat menjadi referensi dalam pengembangan teknologi pengolahan limbah industri yang lebih ramah lingkungan di masa depan.References
Abas, K. M., & Fathy, N. A. (2024). Sodalite zeolitic materials produced from coal fly ash for removal of congo red dye from aqueous solutions. International Journal of Environmental Science and Technology, 21(5), 5165–5184. https://doi.org/10.1007/s13762-023-05347-0
Abinawa, C., & Gobel, A. P. (2024). Studi Pengolahan Limbah Fly Ash Batubara dalam Upaya Peningkatan Konsentrasi Silika Menggunakan Asam Sitrat. INSOLOGI: Jurnal Sains Dan Teknologi. https://doi.org/10.55123/insologi.v3i3.3519
Affat, S. S. (2008). Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A review. University of Thi-Qar Journal of Science, 8(1), 130–135. http://doi.org/10.32792/utq/utjsci/v8/1/21
Al-etaibi, A. M., & El-apasery, M. A. (2023). Can Novel Synthetic Disperse Dyes for Polyester Fabric Dyeing Provide Added Value ?. Polymers, 15(8), 1845. https://doi.org/10.3390/polym15081845
Al-Tohamy, R., Ali, S., Li, F.-C., Okasha, K., Mahmoud, Y., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Al., A. G. et. (2016). Colorants in Health and Environmental Aspects. Dyes and Pigments, 69–83. https://doi.org/10.1007/978-3-319-33892-7
Anggorowati, H., Perwitasari, & Lestari, I. (2022). Manik Komposit Abu Layang Batu Bara – Alginat untuk Menghilangkan Rhodamine B Fly Ash – Alginate Composites Beads for Rhodamine B Removal. Eksergi, 19(3), 160–164. https://doi.org/https://doi.org/10.31315/e.v19i3.8199
Aspland, J. (1992). A Series on Dyeing Chap.3, Part I; Vat Dyes and Their Application. Textile Chemist and Colorist, 24. https://consensus.app/papers/a-series-on-dyeing-chap3-part-i-vat-dyes-and-their-aspland/f0a46fa9cea25671887ec3c66c9d72e1/
Astuti, W., Chafidz, A., Wahyuni, E. T., Prasetya, A., Bendiyasa, I. M., & Abasaeed, A. E. (2019). Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. Journal of Environmental Chemical Engineering, 7(5), 1–10. https://doi.org/10.1016/j.jece.2019.103262
Balji, G. B., & Kumar, P. S. (2023). Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies. Adsorption Science and Technology, 1(2808794), 1–15. https://doi.org/10.1155/2023/2808794
Benli, H. (2024). Bio-mordants: a review. Environmental Science and Pollution Research International, 31, 20714–20771. https://doi.org/10.1007/s11356-024-32174-8
Benosmane, N., Boutemeur, B., Hamdi, S. M., & Hamdi, M. (2022). Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Applied Water Science, 12(5), 1–11. https://doi.org/10.1007/s13201-022-01627-1
Bhatt, A., Priyadarshini, S., & Acharath, A. (2019). Physical , chemical , and geotechnical properties of coal fl y ash : A global review. Case Studies in Construction Materials, 11, 1–11. https://doi.org/10.1016/j.cscm.2019.e00263
Borhade, A. V., Kshirsagar, T. A., & Dholi, A. G. (2017). Eco-Friendly Synthesis of Aluminosilicate Bromo Sodalite from Waste Coal Fly Ash for the Removal of Copper and Methylene Blue Dye. Arabian Journal for Science and Engineering, 42, 4479–4491. https://doi.org/10.1007/s13369-017-2759-9
Calatayud, M., Markovits, A., Ménétrey, M., Mguig, B., & Minot, C. (2003). Adsorption on perfect and reduced surfaces of metal oxides. Catalysis Today, 85, 125–143. https://doi.org/10.1016/S0920-5861(03)00381-X
Calvet, R. (1989). Adsorption of organic chemicals in soils. Environmental Health Perspectives, 83, 145–177. https://doi.org/10.1289/EHP.8983145
Chadijah, S., Ilyas Jurusan Kimia, A., Sains dan Teknologi, F., & Alauddin Makassar, U. (2013). Analisa Penurunan Kadar Cod Dan Bod Limbah Cair Laboratorium Biokimia Uin Makassar Menggunakan Fly Ash (Abu Terbang) Batubara. Jurnal Penelitian Sains Kimia, 1(1), 64–75. https://doi.org/10.24252/al-kimia.v1i1.1622
Chang, Z., Lu, C., Bai, L., Guo, N., Xing, Z., & Yan, Y. (2024). Removal of Cd2+ and Pb2+ from an Aqueous Solution Using Modified Coal Gangue: Characterization, Performance, and Mechanisms. Journal Processes, 12(10), 2095. https://doi.org/10.3390/pr12102095
Costa, T. B. da, Silva, M. G. C. da, & Vieira, M. G. A. (2020). Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials: a review with recent studies and promising approaches in column applications. Journal of Rare Earths, 38(4), 339–355. https://doi.org/https://doi.org/10.1016/j.jre.2019.06.001
Dash, S., Chaudhuri, H., Gupta, R., & Nair, U. G. (2018). Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: Kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 6(5), 5897–5905. https://doi.org/10.1016/j.jece.2018.05.017
Dhaouadi, F., Sellaoui, L., Reynel-Ávila, H., Landín-Sandoval, V., Mendoza-Castillo, D., Jaime-Leal, J., Lima, E., Bonilla-Petriciolet, A., & Lamine, A. (2021). Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environmental Science and Pollution Research, 28, 30943–30954. https://doi.org/10.1007/s11356-021-12832-x
Duval, J., Pecher, V., Poujol, M., & Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812–833. https://doi.org/10.1016/J.INDCROP.2016.09.056
Eteba, A., Bassyouni, M., & Saleh, M. (2023). Utilization of chemically modified coal fly ash as cost ‑ effective adsorbent for removal of hazardous organic wastes. International Journal of Environmental Science and Technology, 20(7), 7589–7602. https://doi.org/10.1007/s13762-022-04457-5
Fourness, R. (2008). The Disperse Dyes — Their Development and Application. Journal of The Society of Dyers and Colourists, 72, 513–527. https://doi.org/10.1111/J.1478-4408.1956.TB02113.X
Freeman, H. S. (2018). Mordant dye application on cotton : optimisation and combination with natural Coloration Technology. December. https://doi.org/10.1111/cote.12288
Garg, A., & Chopra, L. (2021). Dye Waste: A significant environmental hazard. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.09.003
Hagan, E., & Poulin, J. (2021). Statistics of the early synthetic dye industry. Heritage Science, 9(1), 1–14. https://doi.org/10.1186/s40494-021-00493-5
Haleem, A., Shafiq, A., Chen, S.-Q., & Nazar, M. (2023). A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules, 28. https://doi.org/10.3390/molecules28031081
Hanum, F. F., Salamah, S., Sanuhung, A. R., & Wardhana, B. S. (2024). Study On The Potential Contamination Of Heavy Metals : Analysis Of Cr And Pb Contents From Power Plants. Jurnal Sains Natural, 14(1), 53–61. https://doi.org/10.31938/jsn.v14i1.689
Haque, A., Sultana, N., Sayem, A., & Smriti, S. (2022). Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review. Sustainability. https://doi.org/10.3390/su141711098
Haryanti, N. H. (2017). Uji Abu Terbang Pltu Asam Asam Sebagai Bahan Pembuatan Bata Ringan. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 11(2), 127–137. http://dx.doi.org/10.20527/flux.v11i2.2675
Hussain, M., Tufa, L. D., Yusup, S., & Zabiri, H. (2019). Characterization of Coal Bottom Ash & its Potential to be used as Catalyst in Biomass Gasification. Materials Today: Proceedings, 16, 1886–1893. https://doi.org/10.1016/j.matpr.2019.06.065
Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H., & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422(April 2021), 126778. https://doi.org/10.1016/j.jhazmat.2021.126778
Imran, Hanum, F. F., Setya Wardhana, B., Totok;, E. S., & Febriani, A. V. (2024). Karakterisasi Komposisi Kimia Dan Potensi Pemanfaatan Campuran Tanah Gambut Kalimantan Timur Dengan Fly Ash Dan Bottom Ash Untuk Pertanian. Jurnal Crystal: Publikasi Penelitian Kimia Dan Terapannya, 6(2), 115–123. https://doi.org/10.36526/jc.v6i2.4250
Islam, M. M., Aidid, A. R., Mohshin, J. N., Mondal, H., Ganguli, S., & Chakraborty, A. K. (2025). A critical review on textile dye-containing wastewater : Ecotoxicity , health risks , and remediation strategies for environmental safety. Cleaner Chemical Engineering, 11(January), 100165. https://doi.org/10.1016/j.clce.2025.100165
Ismail, M., Akhtar, K., Khan, M., Kamal, T., Khan, M., Asiri, A., Seo, J., & Khan, S. (2019). Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design. https://doi.org/10.2174/1381612825666191021142026
Jadaa, W. (2024). Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review. Clean Technologies, 6(1), 221–279. https://doi.org/10.3390/cleantechnol6010013
Khan, S., & Borah, D. (2024). Microbial cell factories in the degradation of azo-dye and their limiting factors: An insight. Cleaner Water, 2(May), 100034. https://doi.org/10.1016/j.clwat.2024.100034
Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751–21767. https://doi.org/10.1021/acsomega.4c00887
Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012
Kumar, A., Dixit, U., Singh, K., Gupta, S. P., & Beg, M. J. (2021). Structure and Properties of Dyes and Pigments. Dyes and Pigments - Novel Applications and Waste Treatment. https://doi.org/10.5772/INTECHOPEN.97104
Kurniasih, M., Hidayat, N., Roto, R., & Mudasir, M. (2025). Modification of Coal Fly Ash for High Capacity Adsorption of Methylene Blue. Case Studies in Chemical and Environmental Engineering, 11(June), 101101. https://doi.org/10.1016/j.cscee.2025.101101
Kusumlata, Ambade, B., Kumar, A., & Gautam, S. (2024). Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnological Review, 24(2), 126–149. https://doi.org/10.3390/limnolrev24020007
Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., Wu, T., & Xu, M.-X. (2021). Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464
Li, J., Wei, Y., Zou, L., Li, S., & Luo, Y. (2024). Study on the Adsorption Mechanism of Cu2+ by ZnAl-LDH-Containing Exchangeable Interlayer Chloride Ions. Langmuir : The ACS Journal of Surfaces and Colloids. https://doi.org/10.1021/acs.langmuir.4c02644
Li, Y., Yu, K., Li, H., Li, S., Han, J., Guo, D., Chen, S., & Pan, Q. (2025). Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.4c05819
Lin, J., Ye, W., Xie, M., Seo, D. H., Luo, J., Wan, Y., & Van Der Bruggen, B. (2023). Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth & Environment, 4, 785–803. https://doi.org/10.1038/s43017-023-00489-8
Luo, X., Liang, C., & Hu, Y. (2019). Comparison of different enhanced coagulation methods for azo dye removal fromwastewater. Sustainability, 11(17), 1–14. https://doi.org/10.3390/su11174760
Mabuza, L., Sonnenberg, N., & Marx-Pienaar, N. (2023). Natural versus synthetic dyes: Consumers’ understanding of apparel coloration and their willingness to adopt sustainable alternatives. Resources, Conservation and Recycling Advances, 18(2), 200146. https://doi.org/10.1016/j.rcradv.2023.200146
Mahmood Aljamali, N., Abdul Baqi Aldujaili, D., & Obaid Alfatlawi, I. (2021). Physical and Chemical Adsorption and its Applications. International Journal, 7(2), 1–8. https://doi.org/10.37628/IJTCK
Manzoor, J., & Sharma, M. (2020). Impact of Textile Dyes on Human Health and Environment. IGI Global Scientific Publishing, 162–169. https://doi.org/10.4018/978-1-7998-0311-9.ch008
Müller, N., Kirtane, A., Schefer, R., & Mitrano, D. (2024). eDNA Adsorption onto Microplastics: Impacts of Water Chemistry and Polymer Physiochemical Properties. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c10825
Muthukkumaran, A., & Aravamudan, K. (2017). Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects. Journal of Environmental Management, 204 Pt 1, 424–435. https://doi.org/10.1016/j.jenvman.2017.09.010
N’diaye, A., Kankou, M., Hammouti, B., Nandiyanto, A., & Husaeni, D. F. Al. (2022). A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent. Communications in Science and Technology. https://doi.org/10.21924/cst.7.2.2022.977
Nadeem, H., Jamil, F., Iqbal, M. A., Nee, T. W., Kashif, M., Ibrahim, A. H., Al-Rawi, S. S., Zia, S. U., Shoukat, U. S., Kanwal, R., Ahmad, F., Khalid, S., & Rehman, M. T. (2024). Comparative study on efficiency of surface enhanced coal fly ash and raw coal fly ash for the removal of hazardous dyes in wastewater: optimization through response surface methodology. RSC Advances, 14(31), 22312–22325. https://doi.org/10.1039/d4ra04075a
Oladoye, P., Bamigboye, O., Ogunbiyi, O., & Akano, M. T. (2022). Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development. 20(November), 100844. https://doi.org/10.1016/j.gsd.2022.100844
Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16(September), 100678. https://doi.org/10.1016/j.rineng.2022.100678
Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316. https://doi.org/10.1016/j.ecoenv.2021.112316
Omar, A., Mohamed, A., Hamed, E., El-Badry, S., & El-Atawy, M. (2024). Enhancing color brilliance and fastness of polyester dyeing with antipyrine-derived disperse dyes. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2024.125216
Omotosho, O. O., & Ameuru, U. (2019). Synthesis and Dyeing Properties of Acid Dyes Derived from 1-amino-2-naphthol-4-sulphonic Acid. 4, 63. https://doi.org/10.11648/J.WJAC.20190404.14
Pal, C. A., Lingamdinne, L. P., Chang, Y.-Y., & Koduru, J. R. (2023). Chapter 13 - Carbon dots as adsorbents for removal of toxic chemicals. In Carbon Dots in Analytical Chemistry Detection and Imaging (pp. 161–180). https://doi.org/10.1016/B978-0-323-98350-1.00007-4
Patel, M., Tandel, R., Sonera, S., & Bairwa, S. (2023). Trends in the synthesis and application of some reactive dyes: A review. Brazilian Journal of Science. https://doi.org/10.14295/bjs.v2i7.350
Patra, S., Patra, A., Ojha, P., Shekhawat, N., & Khandual, A. (2018). Vat dyeing at room temperature. Cellulose, 25, 5349–5359. https://doi.org/10.1007/s10570-018-1901-5
Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495–536. https://doi.org/10.3390/su16020495
Pizzicato, B., Pacifico, S., Cayuela, D., Mijas, G., & Riba-Moliner, M. (2023). Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules, 28(16), 1–22. https://doi.org/10.3390/molecules28165954
Ramamurthy, K., Priya, P., Murugan, R., & Arockiaraj, J. (2024). Hues of risk: investigating genotoxicity and environmental impacts of azo textile dyes. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-024-33444-1
Repon, M., Dev, B., Rahman, M. A., Jurkonienė, S., Haji, A., Alim, M. A., & Kumpikaitė, E. (2024). Textile dyeing using natural mordants and dyes: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-024-01716-4
Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573
Shen, Y., Zhao, S., Lv, Y., Chen, F., & Fu, L. (2024). Acid red dyes and the role of electrochemical sensors in their determination. Microchemical Journal. https://doi.org/10.1016/j.microc.2024.111705
Shi, Y.-J., Chang, Q., Zhang, T., Song, G., Sun, Y., & Ding, G. (2022). A Review on Selective Dye Adsorption by Different Mechanisms. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2022.108639
Singh, N., & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. https://doi.org/10.1016/j.conbuildmat.2019.117276
Slama, H. Ben, Bouket, A. C., Pourhassan, Z., Alenezi, F. N., & Silini, A. (2021). Diversity of Synthetic Dyes from Textile Industries , Discharge Impacts and Treatment Methods. Applied Sciences, 11(14), 6255. https://doi.org/10.3390/app11146255
Sutrisno, E., Frianto, D., & Wahyudi, A. (2023). FABA: Tata Kelola dan Pemanfaatannya. STANDAR: Better Standard Better Living, 2(6), 5–8. https://majalah.bsilhk.menlhk.go.id/
Takam, B., Tarkwa, J., Acayanka, E., Nzali, S., Chesseu, D. M., Kamgang, G. Y., & Laminsi, S. (2020). Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass : the key role of adsorbate specificity. Environ Sci Pollut Res 27, 20500–20515. https://doi.org/10.1007/s11356-020-08536-3
Thetford, D. (2000). Triphenylmethane and Related Dyes. Encyclopedia of Chemical Technology, 20, 672–737. https://doi.org/10.1002/0471238961.2018091620080520.A01
Tripathi, M., Singh, S., Pathak, S., Kasaudhan, J., Mishra, A., Bala, S., Garg, D., Singh, R., Singh, P., Singh, P., Shukla, A., & Pathak, N. (2023). Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. Toxics, 11. https://doi.org/10.3390/toxics11110940
Uddin, J., Ampiaw, R. E., & Lee, W. (2021). Chemosphere Adsorptive removal of dyes from wastewater using a metal-organic framework : A review. Chemosphere, 284(June), 131314. https://doi.org/10.1016/j.chemosphere.2021.131314
Vidali, G., Ihm, G., Kim, H.-Y., & Cole, M. (1991). Potentials of physical adsorption. Surface Science Reports, 12, 135–181. https://doi.org/10.1016/0167-5729(91)90012-M
Wardhana, B. S., Hanum, F. F., Mufrodi, Z., & Jamilatun, S. (2024). Review : Effect Of Material Characteristics , And Process Conditions In Reducing Gaseous Pollutants Using Fly Ash ( Fa ) - Based Adsorbent. Jurnal Sains Natural, 14(4), 169–178. https://doi.org/10.31938/jsn.v14i4
Wardhana, B. S., Musnamar, A. A., & Rahayu, D. E. (2024). Pengolahan Air Limbah Industri: Pendekatan Metode Adsorpsi Dalam Perspektif Islam Berkemajuan. Jurnal Kemuhammadiyahan Dan Integrasi Ilmu, 2(2), 213–225. https://doi.org/10.24853/jkii.2.2.213-225
Wei, Q., Zhang, Y., Zhang, K., Mwasiagi, J., Zhao, X., Chow, C., & Tang, R. (2022). Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure. Korean Journal of Chemical Engineering, 39, 1850–1862. https://doi.org/10.1007/s11814-021-1056-1
Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-ud-din, W., Hameed, M. A., Abrar, M. M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water, 13(215), 1–25. https://doi.org/10.3390/w13020215
Zhou, H., Bhattarai, R., Li, Y., Si, B., Dong, X., Wang, T., & Yao, Z. (2022). Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of the Total Environment, 804, 149985. https://doi.org/10.1016/j.scitotenv.2021.149985