Potensi Fly Ash dan Bottom Ash (FABA) sebagai Bahan Adsorben untuk Mengatasi Pencemaran Zat Warna Sintetis di Limbah Industri

Authors

  • Budi Setya Wardhana Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Farrah Fadhillah Hanum Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Rimadina Sukmasuci Lestari Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Dheka Esti Rahayu Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Mar’atu Roisa Amini Magister Teknik Kimia, Faculty of Natural and applied sciences, Suleyman Demirel University

Keywords:

zat pewarna, adsorpsi, adsorben, FABA, lingkungan

Abstract

Pertumbuhan industri tekstil yang pesat telah menyebabkan peningkatan limbah cair yang mengandung zat pewarna sintetis. Zat pewarna ini dikenal sulit terurai serta berdampak negatif terhadap lingkungan dan kesehatan manusia. Berbagai metode pengolahan limbah telah dikembangkan, salah satunya adalah metode adsorpsi yang dinilai efisien dan ramah lingkungan. FABA yang merupakan limbah padat dari Pembangkit Listrik Tenaga Uap (PLTU), kini tidak lagi dikategorikan sebagai limbah B3 dan berpotensi dimanfaatkan sebagai material adsorben. Artikel ini mengkaji karakteristik FABA, efektivitasnya dalam mengadsorpsi zat pewarna, serta faktor-faktor yang memengaruhi kinerjanya. Hasil kajian menunjukkan bahwa FABA mampu menurunkan konsentrasi zat pewarna seperti Rhodamine B (RhB), Direct Blue 78 (DB 78), Crystal Violet (CV), dan Direct Fast Scarlet 4BS (DFC 4BS) secara signifikan, dengan efisiensi penyisihan mencapai lebih dari 90%. Pemanfaatan FABA sebagai adsorben tidak hanya menawarkan solusi pengolahan limbah cair industri yang lebih ekonomis dan berkelanjutan, tetapi juga berkontribusi terhadap pengurangan limbah padat PLTU. Kajian ini diharapkan dapat menjadi referensi dalam pengembangan teknologi pengolahan limbah industri yang lebih ramah lingkungan di masa depan.

References

Abas, K. M., & Fathy, N. A. (2024). Sodalite zeolitic materials produced from coal fly ash for removal of congo red dye from aqueous solutions. International Journal of Environmental Science and Technology, 21(5), 5165–5184. https://doi.org/10.1007/s13762-023-05347-0

Abinawa, C., & Gobel, A. P. (2024). Studi Pengolahan Limbah Fly Ash Batubara dalam Upaya Peningkatan Konsentrasi Silika Menggunakan Asam Sitrat. INSOLOGI: Jurnal Sains Dan Teknologi. https://doi.org/10.55123/insologi.v3i3.3519

Affat, S. S. (2008). Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A review. University of Thi-Qar Journal of Science, 8(1), 130–135. http://doi.org/10.32792/utq/utjsci/v8/1/21

Al-etaibi, A. M., & El-apasery, M. A. (2023). Can Novel Synthetic Disperse Dyes for Polyester Fabric Dyeing Provide Added Value ?. Polymers, 15(8), 1845. https://doi.org/10.3390/polym15081845

Al-Tohamy, R., Ali, S., Li, F.-C., Okasha, K., Mahmoud, Y., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160

Al., A. G. et. (2016). Colorants in Health and Environmental Aspects. Dyes and Pigments, 69–83. https://doi.org/10.1007/978-3-319-33892-7

Anggorowati, H., Perwitasari, & Lestari, I. (2022). Manik Komposit Abu Layang Batu Bara – Alginat untuk Menghilangkan Rhodamine B Fly Ash – Alginate Composites Beads for Rhodamine B Removal. Eksergi, 19(3), 160–164. https://doi.org/https://doi.org/10.31315/e.v19i3.8199

Aspland, J. (1992). A Series on Dyeing Chap.3, Part I; Vat Dyes and Their Application. Textile Chemist and Colorist, 24. https://consensus.app/papers/a-series-on-dyeing-chap3-part-i-vat-dyes-and-their-aspland/f0a46fa9cea25671887ec3c66c9d72e1/

Astuti, W., Chafidz, A., Wahyuni, E. T., Prasetya, A., Bendiyasa, I. M., & Abasaeed, A. E. (2019). Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. Journal of Environmental Chemical Engineering, 7(5), 1–10. https://doi.org/10.1016/j.jece.2019.103262

Balji, G. B., & Kumar, P. S. (2023). Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies. Adsorption Science and Technology, 1(2808794), 1–15. https://doi.org/10.1155/2023/2808794

Benli, H. (2024). Bio-mordants: a review. Environmental Science and Pollution Research International, 31, 20714–20771. https://doi.org/10.1007/s11356-024-32174-8

Benosmane, N., Boutemeur, B., Hamdi, S. M., & Hamdi, M. (2022). Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Applied Water Science, 12(5), 1–11. https://doi.org/10.1007/s13201-022-01627-1

Bhatt, A., Priyadarshini, S., & Acharath, A. (2019). Physical , chemical , and geotechnical properties of coal fl y ash : A global review. Case Studies in Construction Materials, 11, 1–11. https://doi.org/10.1016/j.cscm.2019.e00263

Borhade, A. V., Kshirsagar, T. A., & Dholi, A. G. (2017). Eco-Friendly Synthesis of Aluminosilicate Bromo Sodalite from Waste Coal Fly Ash for the Removal of Copper and Methylene Blue Dye. Arabian Journal for Science and Engineering, 42, 4479–4491. https://doi.org/10.1007/s13369-017-2759-9

Calatayud, M., Markovits, A., Ménétrey, M., Mguig, B., & Minot, C. (2003). Adsorption on perfect and reduced surfaces of metal oxides. Catalysis Today, 85, 125–143. https://doi.org/10.1016/S0920-5861(03)00381-X

Calvet, R. (1989). Adsorption of organic chemicals in soils. Environmental Health Perspectives, 83, 145–177. https://doi.org/10.1289/EHP.8983145

Chadijah, S., Ilyas Jurusan Kimia, A., Sains dan Teknologi, F., & Alauddin Makassar, U. (2013). Analisa Penurunan Kadar Cod Dan Bod Limbah Cair Laboratorium Biokimia Uin Makassar Menggunakan Fly Ash (Abu Terbang) Batubara. Jurnal Penelitian Sains Kimia, 1(1), 64–75. https://doi.org/10.24252/al-kimia.v1i1.1622

Chang, Z., Lu, C., Bai, L., Guo, N., Xing, Z., & Yan, Y. (2024). Removal of Cd2+ and Pb2+ from an Aqueous Solution Using Modified Coal Gangue: Characterization, Performance, and Mechanisms. Journal Processes, 12(10), 2095. https://doi.org/10.3390/pr12102095

Costa, T. B. da, Silva, M. G. C. da, & Vieira, M. G. A. (2020). Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials: a review with recent studies and promising approaches in column applications. Journal of Rare Earths, 38(4), 339–355. https://doi.org/https://doi.org/10.1016/j.jre.2019.06.001

Dash, S., Chaudhuri, H., Gupta, R., & Nair, U. G. (2018). Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: Kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 6(5), 5897–5905. https://doi.org/10.1016/j.jece.2018.05.017

Dhaouadi, F., Sellaoui, L., Reynel-Ávila, H., Landín-Sandoval, V., Mendoza-Castillo, D., Jaime-Leal, J., Lima, E., Bonilla-Petriciolet, A., & Lamine, A. (2021). Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environmental Science and Pollution Research, 28, 30943–30954. https://doi.org/10.1007/s11356-021-12832-x

Duval, J., Pecher, V., Poujol, M., & Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812–833. https://doi.org/10.1016/J.INDCROP.2016.09.056

Eteba, A., Bassyouni, M., & Saleh, M. (2023). Utilization of chemically modified coal fly ash as cost ‑ effective adsorbent for removal of hazardous organic wastes. International Journal of Environmental Science and Technology, 20(7), 7589–7602. https://doi.org/10.1007/s13762-022-04457-5

Fourness, R. (2008). The Disperse Dyes — Their Development and Application. Journal of The Society of Dyers and Colourists, 72, 513–527. https://doi.org/10.1111/J.1478-4408.1956.TB02113.X

Freeman, H. S. (2018). Mordant dye application on cotton : optimisation and combination with natural Coloration Technology. December. https://doi.org/10.1111/cote.12288

Garg, A., & Chopra, L. (2021). Dye Waste: A significant environmental hazard. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.09.003

Hagan, E., & Poulin, J. (2021). Statistics of the early synthetic dye industry. Heritage Science, 9(1), 1–14. https://doi.org/10.1186/s40494-021-00493-5

Haleem, A., Shafiq, A., Chen, S.-Q., & Nazar, M. (2023). A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules, 28. https://doi.org/10.3390/molecules28031081

Hanum, F. F., Salamah, S., Sanuhung, A. R., & Wardhana, B. S. (2024). Study On The Potential Contamination Of Heavy Metals : Analysis Of Cr And Pb Contents From Power Plants. Jurnal Sains Natural, 14(1), 53–61. https://doi.org/10.31938/jsn.v14i1.689

Haque, A., Sultana, N., Sayem, A., & Smriti, S. (2022). Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review. Sustainability. https://doi.org/10.3390/su141711098

Haryanti, N. H. (2017). Uji Abu Terbang Pltu Asam Asam Sebagai Bahan Pembuatan Bata Ringan. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 11(2), 127–137. http://dx.doi.org/10.20527/flux.v11i2.2675

Hussain, M., Tufa, L. D., Yusup, S., & Zabiri, H. (2019). Characterization of Coal Bottom Ash & its Potential to be used as Catalyst in Biomass Gasification. Materials Today: Proceedings, 16, 1886–1893. https://doi.org/10.1016/j.matpr.2019.06.065

Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H., & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422(April 2021), 126778. https://doi.org/10.1016/j.jhazmat.2021.126778

Imran, Hanum, F. F., Setya Wardhana, B., Totok;, E. S., & Febriani, A. V. (2024). Karakterisasi Komposisi Kimia Dan Potensi Pemanfaatan Campuran Tanah Gambut Kalimantan Timur Dengan Fly Ash Dan Bottom Ash Untuk Pertanian. Jurnal Crystal: Publikasi Penelitian Kimia Dan Terapannya, 6(2), 115–123. https://doi.org/10.36526/jc.v6i2.4250

Islam, M. M., Aidid, A. R., Mohshin, J. N., Mondal, H., Ganguli, S., & Chakraborty, A. K. (2025). A critical review on textile dye-containing wastewater : Ecotoxicity , health risks , and remediation strategies for environmental safety. Cleaner Chemical Engineering, 11(January), 100165. https://doi.org/10.1016/j.clce.2025.100165

Ismail, M., Akhtar, K., Khan, M., Kamal, T., Khan, M., Asiri, A., Seo, J., & Khan, S. (2019). Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design. https://doi.org/10.2174/1381612825666191021142026

Jadaa, W. (2024). Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review. Clean Technologies, 6(1), 221–279. https://doi.org/10.3390/cleantechnol6010013

Khan, S., & Borah, D. (2024). Microbial cell factories in the degradation of azo-dye and their limiting factors: An insight. Cleaner Water, 2(May), 100034. https://doi.org/10.1016/j.clwat.2024.100034

Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751–21767. https://doi.org/10.1021/acsomega.4c00887

Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012

Kumar, A., Dixit, U., Singh, K., Gupta, S. P., & Beg, M. J. (2021). Structure and Properties of Dyes and Pigments. Dyes and Pigments - Novel Applications and Waste Treatment. https://doi.org/10.5772/INTECHOPEN.97104

Kurniasih, M., Hidayat, N., Roto, R., & Mudasir, M. (2025). Modification of Coal Fly Ash for High Capacity Adsorption of Methylene Blue. Case Studies in Chemical and Environmental Engineering, 11(June), 101101. https://doi.org/10.1016/j.cscee.2025.101101

Kusumlata, Ambade, B., Kumar, A., & Gautam, S. (2024). Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnological Review, 24(2), 126–149. https://doi.org/10.3390/limnolrev24020007

Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., Wu, T., & Xu, M.-X. (2021). Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464

Li, J., Wei, Y., Zou, L., Li, S., & Luo, Y. (2024). Study on the Adsorption Mechanism of Cu2+ by ZnAl-LDH-Containing Exchangeable Interlayer Chloride Ions. Langmuir : The ACS Journal of Surfaces and Colloids. https://doi.org/10.1021/acs.langmuir.4c02644

Li, Y., Yu, K., Li, H., Li, S., Han, J., Guo, D., Chen, S., & Pan, Q. (2025). Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.4c05819

Lin, J., Ye, W., Xie, M., Seo, D. H., Luo, J., Wan, Y., & Van Der Bruggen, B. (2023). Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth & Environment, 4, 785–803. https://doi.org/10.1038/s43017-023-00489-8

Luo, X., Liang, C., & Hu, Y. (2019). Comparison of different enhanced coagulation methods for azo dye removal fromwastewater. Sustainability, 11(17), 1–14. https://doi.org/10.3390/su11174760

Mabuza, L., Sonnenberg, N., & Marx-Pienaar, N. (2023). Natural versus synthetic dyes: Consumers’ understanding of apparel coloration and their willingness to adopt sustainable alternatives. Resources, Conservation and Recycling Advances, 18(2), 200146. https://doi.org/10.1016/j.rcradv.2023.200146

Mahmood Aljamali, N., Abdul Baqi Aldujaili, D., & Obaid Alfatlawi, I. (2021). Physical and Chemical Adsorption and its Applications. International Journal, 7(2), 1–8. https://doi.org/10.37628/IJTCK

Manzoor, J., & Sharma, M. (2020). Impact of Textile Dyes on Human Health and Environment. IGI Global Scientific Publishing, 162–169. https://doi.org/10.4018/978-1-7998-0311-9.ch008

Müller, N., Kirtane, A., Schefer, R., & Mitrano, D. (2024). eDNA Adsorption onto Microplastics: Impacts of Water Chemistry and Polymer Physiochemical Properties. Environmental Science & Technology. https://doi.org/10.1021/acs.est.3c10825

Muthukkumaran, A., & Aravamudan, K. (2017). Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects. Journal of Environmental Management, 204 Pt 1, 424–435. https://doi.org/10.1016/j.jenvman.2017.09.010

N’diaye, A., Kankou, M., Hammouti, B., Nandiyanto, A., & Husaeni, D. F. Al. (2022). A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent. Communications in Science and Technology. https://doi.org/10.21924/cst.7.2.2022.977

Nadeem, H., Jamil, F., Iqbal, M. A., Nee, T. W., Kashif, M., Ibrahim, A. H., Al-Rawi, S. S., Zia, S. U., Shoukat, U. S., Kanwal, R., Ahmad, F., Khalid, S., & Rehman, M. T. (2024). Comparative study on efficiency of surface enhanced coal fly ash and raw coal fly ash for the removal of hazardous dyes in wastewater: optimization through response surface methodology. RSC Advances, 14(31), 22312–22325. https://doi.org/10.1039/d4ra04075a

Oladoye, P., Bamigboye, O., Ogunbiyi, O., & Akano, M. T. (2022). Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development. 20(November), 100844. https://doi.org/10.1016/j.gsd.2022.100844

Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16(September), 100678. https://doi.org/10.1016/j.rineng.2022.100678

Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316. https://doi.org/10.1016/j.ecoenv.2021.112316

Omar, A., Mohamed, A., Hamed, E., El-Badry, S., & El-Atawy, M. (2024). Enhancing color brilliance and fastness of polyester dyeing with antipyrine-derived disperse dyes. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2024.125216

Omotosho, O. O., & Ameuru, U. (2019). Synthesis and Dyeing Properties of Acid Dyes Derived from 1-amino-2-naphthol-4-sulphonic Acid. 4, 63. https://doi.org/10.11648/J.WJAC.20190404.14

Pal, C. A., Lingamdinne, L. P., Chang, Y.-Y., & Koduru, J. R. (2023). Chapter 13 - Carbon dots as adsorbents for removal of toxic chemicals. In Carbon Dots in Analytical Chemistry Detection and Imaging (pp. 161–180). https://doi.org/10.1016/B978-0-323-98350-1.00007-4

Patel, M., Tandel, R., Sonera, S., & Bairwa, S. (2023). Trends in the synthesis and application of some reactive dyes: A review. Brazilian Journal of Science. https://doi.org/10.14295/bjs.v2i7.350

Patra, S., Patra, A., Ojha, P., Shekhawat, N., & Khandual, A. (2018). Vat dyeing at room temperature. Cellulose, 25, 5349–5359. https://doi.org/10.1007/s10570-018-1901-5

Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495–536. https://doi.org/10.3390/su16020495

Pizzicato, B., Pacifico, S., Cayuela, D., Mijas, G., & Riba-Moliner, M. (2023). Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules, 28(16), 1–22. https://doi.org/10.3390/molecules28165954

Ramamurthy, K., Priya, P., Murugan, R., & Arockiaraj, J. (2024). Hues of risk: investigating genotoxicity and environmental impacts of azo textile dyes. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-024-33444-1

Repon, M., Dev, B., Rahman, M. A., Jurkonienė, S., Haji, A., Alim, M. A., & Kumpikaitė, E. (2024). Textile dyeing using natural mordants and dyes: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-024-01716-4

Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573

Shen, Y., Zhao, S., Lv, Y., Chen, F., & Fu, L. (2024). Acid red dyes and the role of electrochemical sensors in their determination. Microchemical Journal. https://doi.org/10.1016/j.microc.2024.111705

Shi, Y.-J., Chang, Q., Zhang, T., Song, G., Sun, Y., & Ding, G. (2022). A Review on Selective Dye Adsorption by Different Mechanisms. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2022.108639

Singh, N., & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. https://doi.org/10.1016/j.conbuildmat.2019.117276

Slama, H. Ben, Bouket, A. C., Pourhassan, Z., Alenezi, F. N., & Silini, A. (2021). Diversity of Synthetic Dyes from Textile Industries , Discharge Impacts and Treatment Methods. Applied Sciences, 11(14), 6255. https://doi.org/10.3390/app11146255

Sutrisno, E., Frianto, D., & Wahyudi, A. (2023). FABA: Tata Kelola dan Pemanfaatannya. STANDAR: Better Standard Better Living, 2(6), 5–8. https://majalah.bsilhk.menlhk.go.id/

Takam, B., Tarkwa, J., Acayanka, E., Nzali, S., Chesseu, D. M., Kamgang, G. Y., & Laminsi, S. (2020). Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass : the key role of adsorbate specificity. Environ Sci Pollut Res 27, 20500–20515. https://doi.org/10.1007/s11356-020-08536-3

Thetford, D. (2000). Triphenylmethane and Related Dyes. Encyclopedia of Chemical Technology, 20, 672–737. https://doi.org/10.1002/0471238961.2018091620080520.A01

Tripathi, M., Singh, S., Pathak, S., Kasaudhan, J., Mishra, A., Bala, S., Garg, D., Singh, R., Singh, P., Singh, P., Shukla, A., & Pathak, N. (2023). Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. Toxics, 11. https://doi.org/10.3390/toxics11110940

Uddin, J., Ampiaw, R. E., & Lee, W. (2021). Chemosphere Adsorptive removal of dyes from wastewater using a metal-organic framework : A review. Chemosphere, 284(June), 131314. https://doi.org/10.1016/j.chemosphere.2021.131314

Vidali, G., Ihm, G., Kim, H.-Y., & Cole, M. (1991). Potentials of physical adsorption. Surface Science Reports, 12, 135–181. https://doi.org/10.1016/0167-5729(91)90012-M

Wardhana, B. S., Hanum, F. F., Mufrodi, Z., & Jamilatun, S. (2024). Review : Effect Of Material Characteristics , And Process Conditions In Reducing Gaseous Pollutants Using Fly Ash ( Fa ) - Based Adsorbent. Jurnal Sains Natural, 14(4), 169–178. https://doi.org/10.31938/jsn.v14i4

Wardhana, B. S., Musnamar, A. A., & Rahayu, D. E. (2024). Pengolahan Air Limbah Industri: Pendekatan Metode Adsorpsi Dalam Perspektif Islam Berkemajuan. Jurnal Kemuhammadiyahan Dan Integrasi Ilmu, 2(2), 213–225. https://doi.org/10.24853/jkii.2.2.213-225

Wei, Q., Zhang, Y., Zhang, K., Mwasiagi, J., Zhao, X., Chow, C., & Tang, R. (2022). Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure. Korean Journal of Chemical Engineering, 39, 1850–1862. https://doi.org/10.1007/s11814-021-1056-1

Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-ud-din, W., Hameed, M. A., Abrar, M. M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water, 13(215), 1–25. https://doi.org/10.3390/w13020215

Zhou, H., Bhattarai, R., Li, Y., Si, B., Dong, X., Wang, T., & Yao, Z. (2022). Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of the Total Environment, 804, 149985. https://doi.org/10.1016/j.scitotenv.2021.149985

Downloads

Published

2025-07-09

Issue

Section

Articles