Kajian Teknologi Material Maju untuk Pengolahan Ion Sulfat pada Limbah Cair Industri

Authors

  • Hutri Puspita Sari Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Aster Rahayu Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan
  • Dhias Cahya Hakika Magister Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan

Keywords:

Ion sulfat, Material maju, Removal

Abstract

Pencemaran ion sulfat menjadi masalah serius dalam lingkungan, terutama akibat aktivitas industri seperti pertambangan dan pengolahan mineral. Tingginya konsentrasi sulfat dapat merusak kualitas air dan kesehatan manusia. Tujuan dari artikel ini adalah untuk mengevaluasi efektivitas material maju dalam menghilangkan ion sulfat dari air limbah. Metode yang digunakan mencakup studi literatur yang komprehensif, dengan fokus pada berbagai material seperti nanomaterial, komposit, dan resin penukar ion yang telah terbukti efektif dalam penghilangan sulfat. Hasil penelitian menunjukkan bahwa penggunaan ettringit dan polialuminum chloride (PAC) dapat mencapai efisiensi penghapusan sulfat hingga 90%. Selain itu, material seperti hidrokalumite dan resin penukar ion juga menunjukkan potensi yang signifikan. Kesimpulan dari penelitian ini menegaskan bahwa pemilihan material yang tepat dan pengaturan kondisi operasional, seperti pH dan waktu kontak, sangat berpengaruh terhadap efisiensi penghilangan sulfat. Oleh karena itu, penggunaan material maju menawarkan solusi yang lebih berkelanjutan untuk mengatasi pencemaran sulfat dalam industri, sekaligus mendukung pengelolaan air limbah yang lebih efektif dan ramah lingkungan. Artikel ini diharapkan dapat memberikan wawasan baru untuk praktik pengolahan air yang lebih baik di masa depan.

References

Amaral Filho, J., Azevedo, A., Etchepare, R., & Rubio, J. (2016). Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation. International Journal of Mineral Processing, 149, 1–8. https://doi.org/10.1016/j.minpro.2016.01.012

Bakhtshokouhi, S., & Assadi, A. (2025). Examining sulfate radical-based enhanced oxidation techniques to degradation pharmaceutically active substances in aqueous media: With acetaminophen serving as a case study. Journal of Hazardous Materials Advances, 17(January), 100599. https://doi.org/10.1016/j.hazadv.2025.100599

Fang, P., Tang, Z. J., Chen, X. B., Huang, J. H., Tang, Z. X., & Cen, C. P. (2018). Removal of High-Concentration Sulfate Ions from the Sodium Alkali FGD Wastewater Using Ettringite Precipitation Method: Factor Assessment, Feasibility, and Prospect. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1265168

Hong, S., Cannon, F. S., Hou, P., Byrne, T., & Nieto-Delgado, C. (2014). Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon. Carbon, 73(29), 51–60. https://doi.org/10.1016/j.carbon.2014.02.036

Hou, J., Alghunaimi, F., Han, M., & Aljuryyed, N. (2022). Removal of High-Concentration Sulfate from Seawater by Ettringite Precipitation. Journal of Chemistry, 2022. https://doi.org/10.1155/2022/8723962

Letko Khait, N., Zuccaro, S., Abdo, D., Cui, H., Siu, R., Ho, E., Morshead, C. M., & Shoichet, M. S. (2025). Redesigned chondroitinase ABC degrades inhibitory chondroitin sulfate proteoglycans in vitro and in vivo in the stroke-injured rat brain. Biomaterials, 314(March 2024), 122818. https://doi.org/10.1016/j.biomaterials.2024.122818

Liu, S., Qiu, Q., Yang, H., Zhou, L., & Zhu, X. (2025). Sustained release of persulfate and ferrous sulfate encapsulated in stearic acid for continuous pyrene degradation in groundwater. Environmental Technology and Innovation, 37(November 2024), 103950. https://doi.org/10.1016/j.eti.2024.103950

Liu, X., Yuan, Z., Wu, M., & Guo, J. (2025). Sulfate-reducing capability of nitrate-dependent anaerobic gaseous alkanes degrader. Water Research, 280(March), 123507. https://doi.org/10.1016/j.watres.2025.123507

Mehaidli, A. P., Mandal, R., & Simha, P. (2024). Selective degradation of endogenous organic metabolites in acidified fresh human urine using sulphate radical-based advanced oxidation. Water Research, 257(April), 121751. https://doi.org/10.1016/j.watres.2024.121751

Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21(July 2017), 77–83. https://doi.org/10.1016/j.jwpe.2017.12.004

Navamani Kartic, D., Aditya Narayana, B. C. H., & Arivazhagan, M. (2018). Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach. Journal of Environmental Management, 206, 69–76. https://doi.org/10.1016/j.jenvman.2017.10.017

Nurmesniemi, E. T., Hu, T., Rajaniemi, K., & Lassi, U. (2021). Sulphate removal from mine water by precipitation as ettringite by newly developed electrochemical aluminium dosing method. Desalination and Water Treatment, 217, 195–202. https://doi.org/10.5004/dwt.2021.26920

Öztürk, Y., & Ekmekçi, Z. (2020). Removal of sulfate ions from process water by ion exchange resins. Minerals Engineering, 159(May), 106613. https://doi.org/10.1016/j.mineng.2020.106613

Pereira, S. P. P., Boyle, D., Nogueira, A., & Handy, R. D. (2023). Differences in toxicity and accumulation of metal from copper oxide nanomaterials compared to copper sulphate in zebrafish embryos: Delayed hatching, the chorion barrier and physiological effects. Ecotoxicology and Environmental Safety, 253(February). https://doi.org/10.1016/j.ecoenv.2023.114613

Pratinthong, N., Sangchan, S., Chimupala, Y., & Kijjanapanich, P. (2021). Sulfate removal from lignite coal mine drainage in Thailand using ettringite precipitation. Chemosphere, 285(June), 131357. https://doi.org/10.1016/j.chemosphere.2021.131357

Rahayu, A., Jamilatun, S., Fajri, J. A., & Lim, L. W. (2021). Characterization of Organic Polymer Monolith Columns Containing Ammonium Quarternary As Initial Study For Capillary Chromatography. Elkawnie, 7(1), 119. https://doi.org/10.22373/ekw.v7i1.8764

Rahayu, A., Maryudi, M., Fajri, J. A., Lim, L. W., & Nuraini, N. (2022). Synthesis of Silica-PEG By Physically Coating With PEG 4000 For Absorption of Ion Nitrate. Elkawnie, 8(2), 250. https://doi.org/10.22373/ekw.v8i2.14680

Santana, D. F., de Melo, E. C. R., Pessanha, M. L. G. S., & Guimarães, D. (2023). Removal of sulfate ions from aqueous solutions by precipitation using calcined hydrocalumite as a precipitating agent. International Journal of Environmental Science and Technology, 20(4), 3801–3814. https://doi.org/10.1007/s13762-022-04220-w

Saslow, S. A., Kerisit, S. N., Varga, T., Mergelsberg, S. T., Corkhill, C. L., Snyder, M. M. V., Avalos, N. M., Yorkshire, A. S., Bailey, D. J., Crum, J., & Asmussen, R. M. (2020). Immobilizing Pertechnetate in Ettringite via Sulfate Substitution. Environmental Science and Technology, 54(21), 13610–13618. https://doi.org/10.1021/acs.est.0c03119

Tlaiaa, Y. S., Naser, Z. A. R., & Ali, A. H. (2020). Comparison between coagulation and electrocoagulation processes for the removal of reactive black dye RB-5 and cod reduction. Desalination and Water Treatment, 195, 154–161. https://doi.org/10.5004/dwt.2020.25914

Tolonen, E. T., Hu, T., Rämö, J., & Lassi, U. (2016). The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal. Journal of Environmental Management, 181, 856–862. https://doi.org/10.1016/j.jenvman.2016.06.053

Wang, Dafu, Yang, K., Zhang, Y., Liu, C., Liu, Z., Ren, J., Wu, M., & Pang, B. (2025). Degradation mechanism of cement paste buried in sulfate-rich saline soil. Case Studies in Construction Materials, 22(March), e04537. https://doi.org/10.1016/j.cscm.2025.e04537

Wang, Dengke, Zhang, G., Ding, Q., Yan, P., & Li, Y. (2024). Microstructural evolution and degradation mechanisms of tricalcium silicate and tricalcium aluminate composite pastes under sulfate exposure. Case Studies in Construction Materials, 21(November), e04050. https://doi.org/10.1016/j.cscm.2024.e04050

Wang, Y., Chen, J., Wang, Q., Qin, Q., Ye, J., Han, Y., Li, L., Zhen, W., Zhi, Q., Zhang, Y., & Cao, J. (2019). Increased secondary aerosol contribution and possible processing on polluted winter days in China. Environment International, 127(October 2018), 78–84. https://doi.org/10.1016/j.envint.2019.03.021

Zhang, C., Liu, F., Li, H., Qian, X., Zeng, F., Ma, Y., & Wang, L. (2019). Recovery of magnesium sulfate through crystallization in waste liquid after simultaneous desulfurization and denitrification. Desalination and Water Treatment, 140, 222–230. https://doi.org/10.5004/dwt.2019.23469

Zhang, Y., Li, B., Yu, Y., Zhang, C., Xu, H., Li, K., Zhao, C., Mao, J., & Liu, Y. (2023). Sulfate resistance and degradation mechanism of basalt fiber modified graphite tailings cement-based materials. Journal of Materials Research and Technology, 26, 8757–8775. https://doi.org/10.1016/j.jmrt.2023.09.196

Downloads

Published

2025-07-09

Issue

Section

Articles