Tinjauan Literatur Sistematik Pendekatan Machine Learning untuk Deteksi Kecurangan Laporan Keuangan
Keywords:
Deteksi Kecurangan, Laporan Keuangan, Machine learning, Ensemble learning, Deep learningAbstract
Kecurangan laporan keuangan merupakan ancaman serius terhadap integritas dan transparansi sistem pelaporan keuangan perusahaan, khususnya bagi perusahaan publik. Untuk mengatasi tantangan ini, pendekatan berbasis machine learning telah banyak dikembangkan sebagai alat bantu dalam mengidentifikasi pola-pola kecurangan secara otomatis dan akurat. Penelitian ini menyajikan tinjauan literatur sistematis terhadap berbagai metode klasifikasi yang digunakan dalam deteksi kecurangan laporan keuangan, berdasarkan 43 publikasi akademik dari tahun 2011 hingga 2025. Metode klasifikasi dikelompokkan ke dalam empat taksonomi utama: metode statistik konvensional, algoritma supervised learning, metode ensemble learning, dan metode deep learning. Studi ini juga membahas berbagai sumber data yang digunakan, faktor-faktor yang memengaruhi hasil klasifikasi, serta kelebihan dan kekurangan masing-masing pendekatan. Hasil tinjauan menunjukkan bahwa meskipun metode statistik konvensional seperti regresi logistik masih sering digunakan karena kemudahan interpretasinya, metode berbasis machine learning seperti Random Forest, XGBoost, dan LSTM memberikan performa yang lebih unggul dalam hal akurasi. Namun demikian, tantangan seperti kebutuhan komputasi yang tinggi dan keterbatasan interpretabilitas tetap menjadi perhatian. Studi ini juga mengidentifikasi arah penelitian masa depan, termasuk penggabungan data terstruktur dan tidak terstruktur, penggunaan teknik text mining pada data naratif, serta pengembangan sistem deteksi adaptif. Dengan semakin berkembangnya teknologi data dan kecerdasan buatan, pendekatan berbasis machine learning memiliki potensi besar untuk meningkatkan efektivitas dan efisiensi dalam mendeteksi kecurangan laporan keuangan.References
ACFE Report to the Nations | 2024 Global Fraud Study. (n.d.). https://legacy.acfe.com/report-to-the-nations/2024/
Achakzai, M. a. K., & Peng, J. (2023). Detecting financial statement fraud using dynamic ensemble machine learning. International Review of Financial Analysis, 89, 102827. https://doi.org/10.1016/j.irfa.2023.102827
Ali, A., Razak, S. A., Othman, S. H., Eisa, T. a. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature review. Applied Sciences, 12(19), 9637. https://doi.org/10.3390/app12199637
Bhattacharya, R., Kumar, R., Rajeswari, U., Prakash, J. A., Barodia, N., & Sawadatkar, S. (2024). An analysis on Financial Statement Fraud Detection for Listed Companies using DCNN-LSTM-AE-AM Model. 2024 Asian Conference on Intelligent Technologies (ACOIT), 1–6. https://doi.org/10.1109/acoit62457.2024.10941438
Chen, J., Qian, H., & Yao, W. (2024). Efficient credit card fraud detection based on binary logistic regression. Applied and Computational Engineering, 115(1), 103–108. https://doi.org/10.54254/2755-2721/2025.18483
Chen, S., Goo, Y. J., & Shen, Z. (2014). A hybrid approach of stepwise regression, logistic regression, support vector machine, and Decision Tree for forecasting fraudulent financial statements. The Scientific World JOURNAL, 2014, 1–9. https://doi.org/10.1155/2014/968712
Chen, X., & Zhai, C. (2023). Bagging or boosting? Empirical evidence from financial statement fraud detection. Accounting and Finance, 63(5), 5093–5142. https://doi.org/10.1111/acfi.13159
Gupta, A., Lohani, M. C., & Manchanda, M. (2021). Financial fraud detection using naive bayes algorithm in highly imbalance data set. Journal of Discrete Mathematical Sciences and Cryptography, 24(5), 1559–1572. https://doi.org/10.1080/09720529.2021.1969733
Huang, K. (2020). An optimized LightGBM model for fraud detection. Journal of Physics Conference Series, 1651(1), 012111. https://doi.org/10.1088/1742-6596/1651/1/012111
Indonesia Stock Exchange. (2023, December). Melalui Berbagai Pencapaian Tahun 2023, Pasar Modal Indonesia Tunjukkan Optimisme Hadapi Tahun 2024 [Press release]. Retrieved May 13, 2025, from https://www.idx.co.id/en/news/press-release/2080
Jan, C. (2021). Detection of Financial Statement Fraud Using Deep Learning for Sustainable Development of Capital Markets under Information Asymmetry. Sustainability, 13(17), 9879. https://doi.org/10.3390/su13179879
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2008). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
Li, T., & Zhou, J. (2024). Evaluating the effectiveness of machine learning algorithms for financial fraud detection. In Frontiers in artificial intelligence and applications. https://doi.org/10.3233/faia241178
Miller, M. (2022, January). Insights. KPMG. https://kpmg.com/xx/en/home/insights/2022/01/kpmg-fraud-outlook-survey.html
Mishra, A. (2021). Fraud Detection: A study of AdaBoost Classifier and K-Means Clustering. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3789879
Moepya, S. O., Nelwamondo, F. V., & Van Der Walt, C. (2014). A support vector machine approach to detect Financial statement Fraud in South Africa: A first look. In Lecture notes in computer science (pp. 42–51). https://doi.org/10.1007/978-3-319-05458-2_5
Oguntimilehin, A., Ngaikedi, F., Atachin, A. J., Toyin, O., Ogundipe, A. T., Mebawondu, J. O., Babalola, G. O., Oluwatoki, T. G., & Sanya, O. A. (2024). Financial Fraud Detection Model using Recurrent Neural Network. 2024 IEEE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON), 1–5. https://doi.org/10.1109/nigercon62786.2024.10927232
Otoritas Jasa Keuangan. (2011, July 5). X. K2. Penyampaian Laporan Keuangan Berkala Emiten atau Perusahaan Publik Berdasarkan Keputusan Ketua Badan Pengawas Pasar Modal dan Lembaga Keuangan. https://ojk.go.id/id/regulasi/Pages/BAPEPAM-XK2-tentang-Penyampaian-Laporan-Keuangan-Berkala-Emiten-atau-Perusahaan-Publik.aspx
Psychoula, I., Gutmann, A., Mainali, P., Lee, S. H., Dunphy, P., & Petitcolas, F. a. P. (2021, May 13). Explainable machine learning for fraud detection. arXiv.org. https://arxiv.org/abs/2105.06314
Rahayu, D. V. R. W., & Widuri, R. (2025). Artificial neural network methodology in financial statements fraud: An empirical study in the property and real estate sector. Risk Governance and Control Financial Markets & Institutions, 15(1, special issue), 237–248. https://doi.org/10.22495/rgcv15i1sip9
Sholikah, N. F. P., Putri, W., & Djangi, N. R. M. (2022). Peranan pasar modal dalam perekonomian negara Indonesia. ARBITRASE Journal of Economics and Accounting, 3(2), 341–345. https://doi.org/10.47065/arbitrase.v3i2.496
Tang, X., Liu, G., Yang, J., & Wei, W. (2018). Knowledge-based Financial Statement Fraud Detection System: based on an ontology and a decision tree. KNOWLEDGE ORGANIZATION, 45(3), 205–219. https://doi.org/10.5771/0943-7444-2018-3-205
Tarjo, T., & Herawati, N. (2017). The comparison of two data mining method to detect financial fraud in Indonesia. GATR Accounting and Finance Review, 2(1), 01–08. https://doi.org/10.35609/afr.2017.2.1(1
Tristiawati, P. (2023, November 4). Guru Besar Akuntansi: Indonesia kekurangan Akuntan publik. liputan6.com. https://www.liputan6.com/regional/read/5443669/guru-besar-akuntansi-indonesia-kekurangan-akuntan-publik#:~:text=%E2%80%9CBerdasarkan%20data%20awal%20tahun%202023,dikukuhkan%20sebagai%20Guru%20Besar%20dalam
Wan, Y. (2024). Financial Fraud Detection Study - based on Logit Model. Financial Economics Insights., 1(1), 40–49. https://doi.org/10.70088/r74m3975
Wu, P., & Chen, Y. (2024). Enhanced detection of accounting fraud using a CNN-LSTM-Attention model optimized by Sparrow search. PeerJ Computer Science, 10, e2532. https://doi.org/10.7717/peerj-cs.2532
Zhao, R., Zhang, L., & Li, Z. (2024). Identification of Financial Fraud in Listed Companies Based on Bayesian-LightGBM Model. Proceedings of the 2024 International Conference on Artificial Intelligence and Computer Science, 339–344. https://doi.org/10.1145/3714334.3714391
Zhao, Z., & Bai, T. (2022). Financial fraud detection and prediction in listed companies using SMOTE and machine learning algorithms. Entropy, 24(8), 1157. https://doi.org/10.3390/e24081157
Zhu, S., Wu, H., Ngai, E. W. T., Ren, J., He, D., Ma, T., & Li, Y. (2024). A financial fraud prediction framework based on stacking ensemble learning. Systems, 12(12), 588. https://doi.org/10.3390/systems12120588