Desain Komunikasi Visual Berbasis Segmentasi Pelanggan untuk H&M
Keywords:
komunikasi visual, segmentasi pelanggan, RFM, fashion retail, desain berbasis dataAbstract
Penelitian ini bertujuan untuk merancang strategi komunikasi visual berdasarkan segmentasi pelanggan pada industri fashion retail, studi kasus pada H&M Group. Data diambil dari dataset H&M Personalized Fashion Recommendations di Kaggle dan diolah dengan pendekatan RFM (Recency, Frequency, Monetary) serta algoritma K-Means clustering untuk mengidentifikasi tipe pelanggan. Hasil analisis menunjukkan tiga klaster utama: pelanggan bernilai tinggi, sedang, dan rendah. Berdasarkan hasil tersebut, dirancang pendekatan visual yang berbeda untuk setiap segmen, baik dalam desain iklan digital maupun visual merchandising. Penelitian ini memberikan kontribusi dalam pengambilan keputusan pemasaran visual yang berbasis data untuk meningkatkan retensi pelanggan.References
Aini, N., Hastomo, W., & Yulika Go, R. (2023). Prediction of Anthropogenic Greenhouse Gas Emissions via Manure Management in Indonesia and Alternative Policies for Indonesian Livestock Development. Journal of Renewable Energy and Environment, 10(3), 99–106. https://doi.org/10.30501/jree.2022.354796.1423
Akande, O. N., Akande, H. B., Asani, E. O., & Dautare, B. T. (2024). Customer Segmentation through RFM Analysis and K-means Clustering: Leveraging Data-Driven Insights for Effective Marketing Strategy. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–8. https://doi.org/10.1109/SEB4SDG60871.2024.10630052
Alanadoly, A. B., Sidhu, S. K., & Richards-Carpenter, N. (2024). AI Landscape in Fashion: Insights on Transforming Design, Supply Chains, Marketing, and Consumer Experiences BT - Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Desi (P. Raj, A. Rocha, P. K. Dutta, M. Fiorini, & C. Prakash (Eds.); pp. 417–439). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71052-0_16
Bayangkari Karno, A. S., Hastomo, W., Surawan, T., Lamandasa, S. R., Usuli, S., Kapuy, H. R., & Digdoyo, A. (2023). Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning. International Journal of Electrical and Computer Engineering (IJECE); Vol 13, No 6: December 2023DO - 10.11591/Ijece.V13i6.Pp7065-7077 . https://ijece.iaescore.com/index.php/IJECE/article/view/30669/17032
Cao, G., Na, T., & and Blankson, C. (2022). Big Data, Marketing Analytics, and Firm Marketing Capabilities. Journal of Computer Information Systems, 62(3), 442–451. https://doi.org/10.1080/08874417.2020.1842270
Chen, A. Y., Chun-Ching, C., & and Chen, W.-Y. (2023). The design narrative in design learning: Adjusting the inertia of attention and enhancing design integrity. The Design Journal, 26(4), 519–535. https://doi.org/10.1080/14606925.2023.2189375
Grewal, D., Herhausen, D., Ludwig, S., & Villarroel Ordenes, F. (2022). The Future of Digital Communication Research: Considering Dynamics and Multimodality. Journal of Retailing, 98(2), 224–240. https://doi.org/https://doi.org/10.1016/j.jretai.2021.01.007
Hastomo, W., Aini, N., Karno, A. S. B., & Rere, L. M. R. (2022). Machine Learning Methods for Predicting Manure Management Emissions. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(2 SE-Articles). https://doi.org/10.22146/jnteti.v11i2.2586
Hastomo, W., Bayangkari Karno, A. S., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia. Journal of Physics: Conference Series, 1933(1), 012050. https://doi.org/10.1088/1742-6596/1933/1/012050
Kim, J., Minseong, K., & and Lee, S.-M. (2025). Unlocking Trust Dynamics: An Exploration of Playfulness, Expertise, and Consumer Behavior in Virtual Influencer Marketing. International Journal of Human–Computer Interaction, 41(1), 378–390. https://doi.org/10.1080/10447318.2023.2300018
Ling, C. G., HMGroup, E., Rim, F., Ferrando, J., & Maggie. (2022). H&M Personalized Fashion Recommendations. Kaggle.Com.
Mohiuddin Babu, M., Shahriar, A., Mahfuzur, R., Md Morsaline, B., & and Hack-Polay, D. (2024). The role of artificial intelligence in shaping the future of Agile fashion industry. Production Planning & Control, 35(15), 2084–2098. https://doi.org/10.1080/09537287.2022.2060858
Ozuem, W., Ranfagni, S., Willis, M., Salvietti, G., & Howell, K. (2024). Exploring the relationship between chatbots, service failure recovery and customer loyalty: A frustration–aggression perspective. Psychology & Marketing, 41(10), 2253–2273. https://doi.org/https://doi.org/10.1002/mar.22051
Purcărea, T., Ioan-Franc, V., Ionescu, Ş.-A., Purcărea, I. M., Purcărea, V. L., Purcărea, I., Mateescu-Soare, M. C., Platon, O.-E., & Orzan, A.-O. (2022). Major Shifts in Sustainable Consumer Behavior in Romania and Retailers’ Priorities in Agilely Adapting to It. In Sustainability (Vol. 14, Issue 3). https://doi.org/10.3390/su14031627
Rasul, T., Sumesh, N., Nikolina, P.-S., Wagner Junior, L., Fernando de Oliveira, S., & and Elgammal, I. (2024). The evolution of customer engagement in the digital era for business: A review and future research agenda. Journal of Global Scholars of Marketing Science, 34(3), 325–348. https://doi.org/10.1080/21639159.2023.2275798
Rosário, A. T., & Dias, J. C. (2023). How has data-driven marketing evolved: Challenges and opportunities with emerging technologies. International Journal of Information Management Data Insights, 3(2), 100203. https://doi.org/https://doi.org/10.1016/j.jjimei.2023.100203
Tamm, T., Hallikainen, P., & Tim, Y. (2022). Creative analytics: Towards data-inspired creative decisions. Information Systems Journal, 32(4), 729–753. https://doi.org/https://doi.org/10.1111/isj.12369
Theodorakopoulos, L., & Theodoropoulou, A. (2024). Leveraging Big Data Analytics for Understanding Consumer Behavior in Digital Marketing: A Systematic Review. Human Behavior and Emerging Technologies, 2024(1), 3641502. https://doi.org/https://doi.org/10.1155/2024/3641502
Upadhyay, U., Alok, K., Gajanand, S., Satyajeet, S., Varsha, A., Prabin Kumar, P., & and Gupta, B. B. (2024). A systematic data-driven approach for targeted marketing in enterprise information system. Enterprise Information Systems, 18(8), 2356770. https://doi.org/10.1080/17517575.2024.2356770
Valtonen, T., López-Pernas, S., Saqr, M., Vartiainen, H., Sointu, E. T., & Tedre, M. (2022). The nature and building blocks of educational technology research. Computers in Human Behavior, 128, 107123. https://doi.org/https://doi.org/10.1016/j.chb.2021.107123
Yulianto, R., Faqihudin, Rusli, M. S., Karno, A. S. B., Hastomo, W., Kardian, A. R., Terisia, V., & Surawan, T. (2023). Innovative UNET-Based Steel Defect Detection Using 5 Pretrained Models. Evergreen, 10(4), 2365–2378. https://doi.org/10.5109/7160923