Desain Komunikasi Visual Berbasis Segmentasi Pelanggan untuk H&M

Authors

  • Vany Terisia Program Studi Teknologi Informasi, ITB Ahmad Dahlan
  • Widi Hastomo Program Studi Teknologi Informasi, ITB Ahmad Dahlan
  • Elliya Sestri Program Studi Teknologi Informasi, ITB Ahmad Dahlan
  • Muhajir Syamsu Program Studi Teknologi Informasi, ITB Ahmad Dahlan
  • Lyscha Novitasari Program Studi Desain Komunikasi Visual, ITB Ahmad Dahlan
  • Yoga Rarasto Putra Program Studi Desain Komunikasi Visual, ITB Ahmad Dahlan
  • Zul Fiqhri Program Studi Desain Komunikasi Visual, ITB Ahmad Dahlan
  • Pantja Sudarwanto Program Studi Teknologi Informasi, ITB Ahmad Dahlan
  • Kukuh Daruningsih Program Studi Teknologi Informasi, ITB Ahmad Dahlan

Keywords:

komunikasi visual, segmentasi pelanggan, RFM, fashion retail, desain berbasis data

Abstract

Penelitian ini bertujuan untuk merancang strategi komunikasi visual berdasarkan segmentasi pelanggan pada industri fashion retail, studi kasus pada H&M Group. Data diambil dari dataset H&M Personalized Fashion Recommendations di Kaggle dan diolah dengan pendekatan RFM (Recency, Frequency, Monetary) serta algoritma K-Means clustering untuk mengidentifikasi tipe pelanggan. Hasil analisis menunjukkan tiga klaster utama: pelanggan bernilai tinggi, sedang, dan rendah. Berdasarkan hasil tersebut, dirancang pendekatan visual yang berbeda untuk setiap segmen, baik dalam desain iklan digital maupun visual merchandising. Penelitian ini memberikan kontribusi dalam pengambilan keputusan pemasaran visual yang berbasis data untuk meningkatkan retensi pelanggan.

References

Aini, N., Hastomo, W., & Yulika Go, R. (2023). Prediction of Anthropogenic Greenhouse Gas Emissions via Manure Management in Indonesia and Alternative Policies for Indonesian Livestock Development. Journal of Renewable Energy and Environment, 10(3), 99–106. https://doi.org/10.30501/jree.2022.354796.1423

Akande, O. N., Akande, H. B., Asani, E. O., & Dautare, B. T. (2024). Customer Segmentation through RFM Analysis and K-means Clustering: Leveraging Data-Driven Insights for Effective Marketing Strategy. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–8. https://doi.org/10.1109/SEB4SDG60871.2024.10630052

Alanadoly, A. B., Sidhu, S. K., & Richards-Carpenter, N. (2024). AI Landscape in Fashion: Insights on Transforming Design, Supply Chains, Marketing, and Consumer Experiences BT - Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Desi (P. Raj, A. Rocha, P. K. Dutta, M. Fiorini, & C. Prakash (Eds.); pp. 417–439). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71052-0_16

Bayangkari Karno, A. S., Hastomo, W., Surawan, T., Lamandasa, S. R., Usuli, S., Kapuy, H. R., & Digdoyo, A. (2023). Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning. International Journal of Electrical and Computer Engineering (IJECE); Vol 13, No 6: December 2023DO - 10.11591/Ijece.V13i6.Pp7065-7077 . https://ijece.iaescore.com/index.php/IJECE/article/view/30669/17032

Cao, G., Na, T., & and Blankson, C. (2022). Big Data, Marketing Analytics, and Firm Marketing Capabilities. Journal of Computer Information Systems, 62(3), 442–451. https://doi.org/10.1080/08874417.2020.1842270

Chen, A. Y., Chun-Ching, C., & and Chen, W.-Y. (2023). The design narrative in design learning: Adjusting the inertia of attention and enhancing design integrity. The Design Journal, 26(4), 519–535. https://doi.org/10.1080/14606925.2023.2189375

Grewal, D., Herhausen, D., Ludwig, S., & Villarroel Ordenes, F. (2022). The Future of Digital Communication Research: Considering Dynamics and Multimodality. Journal of Retailing, 98(2), 224–240. https://doi.org/https://doi.org/10.1016/j.jretai.2021.01.007

Hastomo, W., Aini, N., Karno, A. S. B., & Rere, L. M. R. (2022). Machine Learning Methods for Predicting Manure Management Emissions. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(2 SE-Articles). https://doi.org/10.22146/jnteti.v11i2.2586

Hastomo, W., Bayangkari Karno, A. S., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia. Journal of Physics: Conference Series, 1933(1), 012050. https://doi.org/10.1088/1742-6596/1933/1/012050

Kim, J., Minseong, K., & and Lee, S.-M. (2025). Unlocking Trust Dynamics: An Exploration of Playfulness, Expertise, and Consumer Behavior in Virtual Influencer Marketing. International Journal of Human–Computer Interaction, 41(1), 378–390. https://doi.org/10.1080/10447318.2023.2300018

Ling, C. G., HMGroup, E., Rim, F., Ferrando, J., & Maggie. (2022). H&M Personalized Fashion Recommendations. Kaggle.Com.

Mohiuddin Babu, M., Shahriar, A., Mahfuzur, R., Md Morsaline, B., & and Hack-Polay, D. (2024). The role of artificial intelligence in shaping the future of Agile fashion industry. Production Planning & Control, 35(15), 2084–2098. https://doi.org/10.1080/09537287.2022.2060858

Ozuem, W., Ranfagni, S., Willis, M., Salvietti, G., & Howell, K. (2024). Exploring the relationship between chatbots, service failure recovery and customer loyalty: A frustration–aggression perspective. Psychology & Marketing, 41(10), 2253–2273. https://doi.org/https://doi.org/10.1002/mar.22051

Purcărea, T., Ioan-Franc, V., Ionescu, Ş.-A., Purcărea, I. M., Purcărea, V. L., Purcărea, I., Mateescu-Soare, M. C., Platon, O.-E., & Orzan, A.-O. (2022). Major Shifts in Sustainable Consumer Behavior in Romania and Retailers’ Priorities in Agilely Adapting to It. In Sustainability (Vol. 14, Issue 3). https://doi.org/10.3390/su14031627

Rasul, T., Sumesh, N., Nikolina, P.-S., Wagner Junior, L., Fernando de Oliveira, S., & and Elgammal, I. (2024). The evolution of customer engagement in the digital era for business: A review and future research agenda. Journal of Global Scholars of Marketing Science, 34(3), 325–348. https://doi.org/10.1080/21639159.2023.2275798

Rosário, A. T., & Dias, J. C. (2023). How has data-driven marketing evolved: Challenges and opportunities with emerging technologies. International Journal of Information Management Data Insights, 3(2), 100203. https://doi.org/https://doi.org/10.1016/j.jjimei.2023.100203

Tamm, T., Hallikainen, P., & Tim, Y. (2022). Creative analytics: Towards data-inspired creative decisions. Information Systems Journal, 32(4), 729–753. https://doi.org/https://doi.org/10.1111/isj.12369

Theodorakopoulos, L., & Theodoropoulou, A. (2024). Leveraging Big Data Analytics for Understanding Consumer Behavior in Digital Marketing: A Systematic Review. Human Behavior and Emerging Technologies, 2024(1), 3641502. https://doi.org/https://doi.org/10.1155/2024/3641502

Upadhyay, U., Alok, K., Gajanand, S., Satyajeet, S., Varsha, A., Prabin Kumar, P., & and Gupta, B. B. (2024). A systematic data-driven approach for targeted marketing in enterprise information system. Enterprise Information Systems, 18(8), 2356770. https://doi.org/10.1080/17517575.2024.2356770

Valtonen, T., López-Pernas, S., Saqr, M., Vartiainen, H., Sointu, E. T., & Tedre, M. (2022). The nature and building blocks of educational technology research. Computers in Human Behavior, 128, 107123. https://doi.org/https://doi.org/10.1016/j.chb.2021.107123

Yulianto, R., Faqihudin, Rusli, M. S., Karno, A. S. B., Hastomo, W., Kardian, A. R., Terisia, V., & Surawan, T. (2023). Innovative UNET-Based Steel Defect Detection Using 5 Pretrained Models. Evergreen, 10(4), 2365–2378. https://doi.org/10.5109/7160923

Downloads

Published

2025-07-09

Issue

Section

Articles