ANALISIS CLUSTER OTOMATIS MENGGUNAKAN ALGORITMA NOVEL MODIFIED DIFFERENTIAL EVOLUTION
Abstract
Analisis cluster merupakan salah satu permasalahan pembelajaran tidak terbimbing dan teknik datamining yang penting. Akan tetapi, untuk menentukan jumlah cluster akhir merupakan suatu tugasyang menantang. Oleh karena itu, penelitian ini bermaksud mengusulkan algoritma novel modifieddifferential evolution (NMDE) dan algoritma k-means (NMDE-k-means) pada analisis clusterotomatis. Algoritma ini dapat menentukan jumlah cluster akhir dan melakukan pengelompokandata secara otomatis. Pada prinsipnya Algoritma NMDE akan melakukan pencarian global untukmenemukan jumlah cluster dan partisi data, sedangkan algoritma k-means akan memperbaikikinerja algoritma NMDE dalam menentukan centroid cluster. Empat data set yang sudah dikenalyaitu Iris, Wine, Glass dan Vowel digunakan untuk memvalidasi algoritma ini. Hasil komputasimenunjukkan bahwa algoritma ini lebih baik dibandingkan dengan empat algoritma clusterotomatis lainnya yaitu improved automatic clustering based differential evolution (ACDE),automatic clustering using differential evolutionandk-means (ACDE-k-means) dan algoritmacluster otomatis yang berbasis particle swarm optimization (PSO) serta genetic algorithm (GA)References
Jain, A.K., Murty, M.N., dan Flynn, P.J.
Data clustering: a review.ACM
computing surveys (CSUR). 31(3): 264-323.
Kuo, R.J., Akbaria, K., dan Subroto, B.
Application of particle swarm
optimization and perceptual map to
tourist market segmentation.Expert
Systems with Applications. 39(10): 8726-8735.
Frigui, H. dan Krishnapuram, R. 1999. A
robust competitive clustering algorithm
with applications in computer
vision.Pattern Analysis and Machine
Intelligence, IEEE Transactions on.
(5): 450-465.
Higham, D.J., Kalna, G., dan Kibble, M.
Spectral clustering and its use in bioinformatics.Journal of Computational
and Applied Mathematics. 204(1): 25-37.
Al-Omary, A.Y. dan Jamil, M.S. 2006. A
new approach of clustering based
machine-learning algorithm.KnowledgeBased Systems. 19(4): 248-258.
Guerrero-Bote, V.P., López-Pujalte, C.,
de Moya-Anegón, F., dan HerreroSolana, V. 2003. Comparison of neural
models for document
clustering.International Journal of
Approximate Reasoning. 34(2–3): 287-305.
Kuo, R.J., Syu, Y.J., Chen, Z.-Y., dan
Tien, F.C. 2012. Integration of particle
swarm optimization and genetic
algorithm for dynamic
clustering.Information Sciences. 195(0):
-140.
Das, S., Abraham, A., dan Konar, A.
Automatic Clustering Using an
Improved Differential Evolution
Algorithm.Systems, Man and
Cybernetics, Part A: Systems and
Humans, IEEE Transactions on. 38(1):
-237.
He, H. dan Tan, Y. 2012. A two-stage
genetic algorithm for automatic
clustering.Neurocomputing. 81(0): 49-59.
Das, S., Abraham, A., dan Konar, A.
Automatic kernel clustering with a
Multi-Elitist Particle Swarm
Optimization Algorithm.Pattern
Recognition Letters. 29(5): 688-699.
Kuo, R.J., Huang, Y.D., Lin, C.-C., Wu,
Y.-H., dan Zulvia, F.E. 2014. Automatic
kernel clustering with bee colony
optimization algorithm.Information
Sciences. 283(0): 107-122.
Shih-Ming, P. dan Kuo-Sheng, C. 2007.
Evolution-Based Tabu Search Approach
to Automatic Clustering.Systems, Man,
and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on.
(5): 827-838.
Kuo, R.J., Suryani, E., dan Yasid, A.,
Automatic Clustering Combining
Differential Evolution Algorithm and kMeans Algorithm, in Proceedings of the
Institute of Industrial Engineers Asian
Conference 2013, Y.-K. Lin, Y.-C. Tsao,
and S.-W. Lin, Editors.Springer
Singapore. Hal. 1207-1215.
Storn, R. dan Price, K. 1997. Differential
Evolution – A Simple and
Efficient Heuristic for Global
Optimization over Continuous Spaces.J.
of Global Optimization. 11(4): 341-359.
Paterlini, S. dan Krink, T. 2006.
Differential evolution and particle swarm
optimisation in partitional
clustering.Comput. Stat. Data
Anal.50(5): 1220-1247.
Kwedlo, W. 2011. A clustering method
combining differential evolution with the
K-means algorithm.Pattern Recognition
Letters. 32(12): 1613-1621.
Zou, D., Liu, H., Gao, L., dan Li, S.
A novel modified differential
evolution algorithm for constrained
optimization problems.Computers &
Mathematics with Applications. 61(6):
-1623.
Chou, C.-H., Su, M.-C., dan Lai, E. 2004.
A new cluster validity measure and its
application to image compression.Pattern
Anal. Appl.7(2): 205-220.
MacQueen, J. 1967.Some methods for
classification and analysis of
multivariate observations. in
Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics.
Berkeley, Calif.: University of California
Press.
Abdule-Wahab, R., Monmarché, N.,
Slimane, M., Fahdil, M., dan Saleh, H., A
Scatter Search Algorithm for the
Automatic Clustering Problem, in
Advances in Data Mining. Applications
in Medicine, Web Mining, Marketing,
Image and Signal Mining, P. Perner,
Editor. Springer Berlin Heidelberg. Hal.
-364.