ANALISIS CLUSTER OTOMATIS MENGGUNAKAN ALGORITMA NOVEL MODIFIED DIFFERENTIAL EVOLUTION

Achmad Yasid, Budi Dwi Satoto

Abstract


Analisis cluster merupakan salah satu permasalahan pembelajaran tidak terbimbing dan teknik data
mining yang penting. Akan tetapi, untuk menentukan jumlah cluster akhir merupakan suatu tugas
yang menantang. Oleh karena itu, penelitian ini bermaksud mengusulkan algoritma novel modified
differential evolution (NMDE)  dan  algoritma k-means  (NMDE-k-means)  pada  analisis cluster
otomatis.  Algoritma  ini  dapat  menentukan  jumlah cluster akhir  dan  melakukan  pengelompokan
data secara otomatis. Pada prinsipnya Algoritma NMDE akan melakukan pencarian global untuk
menemukan  jumlah cluster dan  partisi  data,  sedangkan  algoritma k-means  akan  memperbaiki
kinerja algoritma NMDE dalam menentukan centroid cluster. Empat data set yang sudah dikenal
yaitu  Iris,  Wine,  Glass  dan  Vowel  digunakan  untuk  memvalidasi  algoritma  ini.  Hasil  komputasi
menunjukkan  bahwa  algoritma  ini lebih  baik  dibandingkan dengan  empat  algoritma  cluster
otomatis  lainnya  yaitu improved automatic clustering  based differential evolution (ACDE),
automatic  clustering  using  differential  evolutionandk-means (ACDE-k-means)  dan  algoritma
cluster otomatis yang berbasis particle swarm optimization (PSO) serta genetic algorithm (GA)

Full Text:

PDF

References


Jain, A.K., Murty, M.N., dan Flynn, P.J.

Data clustering: a review.ACM

computing surveys (CSUR). 31(3): 264-323.

Kuo, R.J., Akbaria, K., dan Subroto, B.

Application of particle swarm

optimization and perceptual map to

tourist market segmentation.Expert

Systems with Applications. 39(10): 8726-8735.

Frigui, H. dan Krishnapuram, R. 1999. A

robust competitive clustering algorithm

with applications in computer

vision.Pattern Analysis and Machine

Intelligence, IEEE Transactions on.

(5): 450-465.

Higham, D.J., Kalna, G., dan Kibble, M.

Spectral clustering and its use in bioinformatics.Journal of Computational

and Applied Mathematics. 204(1): 25-37.

Al-Omary, A.Y. dan Jamil, M.S. 2006. A

new approach of clustering based

machine-learning algorithm.KnowledgeBased Systems. 19(4): 248-258.

Guerrero-Bote, V.P., López-Pujalte, C.,

de Moya-Anegón, F., dan HerreroSolana, V. 2003. Comparison of neural

models for document

clustering.International Journal of

Approximate Reasoning. 34(2–3): 287-305.

Kuo, R.J., Syu, Y.J., Chen, Z.-Y., dan

Tien, F.C. 2012. Integration of particle

swarm optimization and genetic

algorithm for dynamic

clustering.Information Sciences. 195(0):

-140.

Das, S., Abraham, A., dan Konar, A.

Automatic Clustering Using an

Improved Differential Evolution

Algorithm.Systems, Man and

Cybernetics, Part A: Systems and

Humans, IEEE Transactions on. 38(1):

-237.

He, H. dan Tan, Y. 2012. A two-stage

genetic algorithm for automatic

clustering.Neurocomputing. 81(0): 49-59.

Das, S., Abraham, A., dan Konar, A.

Automatic kernel clustering with a

Multi-Elitist Particle Swarm

Optimization Algorithm.Pattern

Recognition Letters. 29(5): 688-699.

Kuo, R.J., Huang, Y.D., Lin, C.-C., Wu,

Y.-H., dan Zulvia, F.E. 2014. Automatic

kernel clustering with bee colony

optimization algorithm.Information

Sciences. 283(0): 107-122.

Shih-Ming, P. dan Kuo-Sheng, C. 2007.

Evolution-Based Tabu Search Approach

to Automatic Clustering.Systems, Man,

and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on.

(5): 827-838.

Kuo, R.J., Suryani, E., dan Yasid, A.,

Automatic Clustering Combining

Differential Evolution Algorithm and kMeans Algorithm, in Proceedings of the

Institute of Industrial Engineers Asian

Conference 2013, Y.-K. Lin, Y.-C. Tsao,

and S.-W. Lin, Editors.Springer

Singapore. Hal. 1207-1215.

Storn, R. dan Price, K. 1997. Differential

Evolution – A Simple and

Efficient Heuristic for Global

Optimization over Continuous Spaces.J.

of Global Optimization. 11(4): 341-359.

Paterlini, S. dan Krink, T. 2006.

Differential evolution and particle swarm

optimisation in partitional

clustering.Comput. Stat. Data

Anal.50(5): 1220-1247.

Kwedlo, W. 2011. A clustering method

combining differential evolution with the

K-means algorithm.Pattern Recognition

Letters. 32(12): 1613-1621.

Zou, D., Liu, H., Gao, L., dan Li, S.

A novel modified differential

evolution algorithm for constrained

optimization problems.Computers &

Mathematics with Applications. 61(6):

-1623.

Chou, C.-H., Su, M.-C., dan Lai, E. 2004.

A new cluster validity measure and its

application to image compression.Pattern

Anal. Appl.7(2): 205-220.

MacQueen, J. 1967.Some methods for

classification and analysis of

multivariate observations. in

Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics

and Probability, Volume 1: Statistics.

Berkeley, Calif.: University of California

Press.

Abdule-Wahab, R., Monmarché, N.,

Slimane, M., Fahdil, M., dan Saleh, H., A

Scatter Search Algorithm for the

Automatic Clustering Problem, in

Advances in Data Mining. Applications

in Medicine, Web Mining, Marketing,

Image and Signal Mining, P. Perner,

Editor. Springer Berlin Heidelberg. Hal.

-364.


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ