IMPLEMENTASI SELEKSI FITUR MENGGUNAKAN ALGORITMA FVBRM UNTUK KLASIFIKASI SERANGAN PADA INTRUSION DETECTION SYSTEM (IDS)
Abstract
Full Text:
PDFReferences
Mrutyunjaya Panda dan Manas Ranjan Patra, 2007, Network Intrusion Detection Using Naïve Bayes. International Journal of Computer Scienece and Network Security, vol. 7, no 12
Saurabh Mukherjee dan Neelman Sharmaa, 2012, Intrusion Detection using Naïve Bayes Classifier with Feature Reduction. Procedia Technology 4 (2012) 119 – 128
Dataset NSL KDD, http://www.unb.ca/cic/datasets/nsl.html (Diakses 14 September 2018)
Weka machine learning tool available on http://www.cs.waikato.ac.nz/ml/weka/downloading.html
Wirawan dan Eksistyanto, 2015, Penerapan Naive Bayes Pada Intrusion Detection System Dengan Diskritisasi Variabel. JUTI - Volume 13, Nomor 2
Dony, Noor, dan Adhistya, 2017, Implementasi Data Mining dengan Seleksi Fitur untuk Klasifikasi Serangan pada Intrusion Detection System (IDS). Prosiding CITEE Hal. 314-321
Nahla Ben Amor, et. al., 2004, Naïve Bayes vs Decision Trees in Intrusion Detection System. ACM Symposium on Applied Computing
Aulia, Rahmadani, Safriadi, 2016, Analisys Information Gain Attribut Evaluation Untuk Klasifikasi Serangan Intrusi, Jurnal ISD Vol 2 no. 2
Refbacks
- There are currently no refbacks.
==============================================================================================================
Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023
ISSN : 2407 – 1846
e-ISSN : 2460 – 8416
==============================================================================================================