PREDIKSI EFEKTIVITAS INTERAKSI ANTARA ANTIBODI DAN VAKSIN H1N1 MELALUI METODE MOLECULAR DOCKING SECARA IN SILICO

Susanty Susanty

Abstract


Flu babi H1N1 merupakan penyakit menular akibat virus influenza tipe A yang telah menjadi pandemik dan mortalitasnya sangat tinggi pada manusia. Pemberian vaksin menjadi salah satu upaya pencegahan penyakit tersebut. Bagian antigenik (epitope) virus H1N1 digunakan untuk merancang suatu vaksin. Beberapa epitope telah diprediksi dari perwakilan protein hemagglutinin (HA), neuramidase (NA), dan matriks 2 (M2) virus H1N1. Pendekatan in silico dilakukan melalui kombinasi prediksi antigen pada tahapan respons imun, yaitu proteasomal cleavage (NetChop), Transporter Antigen Processing (TAP) binding (TAPPred), dan Major Histocompability Complex (MHCPred). Upaya meningkatkan respons imun juga dilakukan dengan memprediksi epitope sel B menggunakan server DiscoTope (conformational epitope) dan BepiPred (sequensial epitope). Enam model vaksin, yaitu NHM, MHN, HNM, MNH, HMN, dan NMH diperoleh dari 21 kombinasi terbaik epitope sel T dan sel B sebagai representasi variasi allele Human Leukocyte Antigen (HLA) dan protein virus H1N1 sehingga diharapkan mampu memberikan respons imun. Struktur 3D vaksin diprediksi dan dimodeling menggunakan server CPHModels dan program Swiss-Pdb Viewer (Deep View). Hasil struktur 3D vaksin dievaluasi menggunakan Ramachandran Plot, BLASTp (database PDB virus), dan FeatureMap 3D. Vaksin terdiri dari 258 asam amino dan memiliki lebih dari 50 % kesamaan struktur 3D dengan protein dalam database. Proses akhir efektivitas antibodi terhadap vaksin diuji melalui molecular docking antara vaksin dengan antibodi dalam database, diperoleh 14 clustering dengan waktu yang dibutuhkan sekitar 18 detik dan data energi minimum interaksi didapatkan antara antibodi terhadap vaksin NHM sebesar -13,6859 kkal/mol.

Full Text:

PDF

References


Baxevanis, A. D. and Ouelette, B. F. F. 2005. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins. 3rd ed., Wiley Interscience.

Bhasin, M., and Raghava, G. P. S. 2003. Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Science. 13: 596-607.

Bourne, P. E., and Weissig, H., 2003. Structural Bioinformatics, Wiley-Liss, Incorporation, New York. pp 507-521

Byun, H., and Lee, S.W., 2003. A Survey on Pattern Recognition Applications of Support Vector Machines. J. Int. Pattern Recog. Artific. Intelligence, 17(3).

Chikhi, A. And Bensegueni, A. 2008. Docking Efficiency Comparison of Surflex, a Commercial Package and Arguslab, a Licensable Freewar. Journal Computation Science System Biology. Vol. 1. pp 081 – 086.

Dönnes, P. and Elofsson, A. 2002. Prediction of MHC class I binding peptides, using SVMHC. Biology Medicine Center Bioinformatics. Center for Bioinformatics Saar, Saarland University. Sweden.

Dönnes, P. and Elofsson, A. 2006. SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Research, Vol. 34, 194-197

Kesmir, C., Nussbaum, A. K., Schild, H., Detours, V., and Brunak, S., 2002. Prediction of Proteasome Cleavage Motifs by Neural Networks. Protein ngineering, Vol. 15, No.4, pp 287-296

Lara, J., Wohlhueter, R. M., Dimitrova, Z., and Khudyakov, Y. E. 2008. Artificial Neural Network for Prediction of Antigenic Activity for A Major Conformational Epitope in the Hepatitis CVvirus NS3 Protein. Bioinformatics. Vol. 24 no. 17 2008, pages 1858–1864

Mayo, M. 2006. Bayesian Sequence Learning For Predicting Protein Cleavage Points. Dept. of Computer Science, university of Waikato, New Zealand.

Nidom, C. A. 2005. Analisis molekuler genoma virus avian influenza H5N1 di Indonesia. Disertasi. UNAIR.

Peters, B., Bulik, S., Tampe, R., Endert, P. M. V., and Holzhutter, H. G. 2003. Identifying MHC Class I Epitopes by Predicting the TAP Transport Efficiency of Epitope Precursor. The Journal of Immunology, 171, 1741-1749

Raji, M. 2006. Avian Influenza A (H5N1): Patogenis, Pencegahan dan Penyebaran pada Manusia. Majalah Ilmu Kefarmasian. Vol.III, No.2 ,55-65.

SaxovaÂ, P., Buus3, S., Brunak, S., and KesËmir, C. 2003. Predicting proteasomal cleavage sites: a comparison of available methods. International Immunology, Vol. 15, No. 7, pp. 781±787

http://bioinformatics.coms.edu/mirror/tappred/ 2008

http://blast.ncbi.nlm.nih.gov/Blast.cgi 2009

http://cbs.dtu.dk/services/NetChop/

http://ncbi.nlm.nih.gov/genomes/FLU/Database.html 2008

http://tools.immuneepitope.org/tools/bcell/iedb input 2008

http://tools.immuneepitope.org/stools/discotope/discotope.do 2008

http://www-bs.informatik.uni-tuebingen.de/SVMHC/ 2008

http://www.cbs.dtu.dk/services/CPHmodels/ 2008

http://www.ebi.ac.uk/Tools/clustalw2/ 2008

http://www.who.int/csr/disease/swineflu/en 2008


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ