STUDI AWAL PENGELOMPOKAN DATA TWITTER TOKOH POLITIK INDONESIA MENGGUNAKAN GRAPH CLUSTERING
Abstract
Twitter sebagai sosial media yang populer, memiliki jumlah pengguna yang sangat besar. Pengelompokan pengguna Twitter menjadi penting untuk dilakukan. Salah satunya dapat menjadi
strategi marketing suatu perusahaan dalam memasarkan produk yang digunakan. Pengelompokan dapat dilakukan dengan memanfaatkan fitur-fitur Twitter yang kemudian dimodelkan dalam bentuk graph
sehingga dapat dilakukan graph clustering. Penelitian ini membandingkan tiga metode graph clustering yaitu fastgreedy, walktrap dan leading eigenvector dengan menggunakan 23000 tweet dari 96 akun
politisi Indonesia. Dari hasil penelitian, nilai purity yang diperoleh adalah antara 0.7-0.8. Dengan nilai purity tertinggi diperoleh saat menggunakan algoritma walktrap dan leading eigenvector yaitu 0.833 dimana fitur Twitter yang digunakan adalah fitur mentions.
Kata kunci: Twitter, graph clustering, fastgreedy, walktrap, leading eigenvector, deteksi
komunitas
strategi marketing suatu perusahaan dalam memasarkan produk yang digunakan. Pengelompokan dapat dilakukan dengan memanfaatkan fitur-fitur Twitter yang kemudian dimodelkan dalam bentuk graph
sehingga dapat dilakukan graph clustering. Penelitian ini membandingkan tiga metode graph clustering yaitu fastgreedy, walktrap dan leading eigenvector dengan menggunakan 23000 tweet dari 96 akun
politisi Indonesia. Dari hasil penelitian, nilai purity yang diperoleh adalah antara 0.7-0.8. Dengan nilai purity tertinggi diperoleh saat menggunakan algoritma walktrap dan leading eigenvector yaitu 0.833 dimana fitur Twitter yang digunakan adalah fitur mentions.
Kata kunci: Twitter, graph clustering, fastgreedy, walktrap, leading eigenvector, deteksi
komunitas
Full Text:
PDFRefbacks
- There are currently no refbacks.
==============================================================================================================
Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023
ISSN : 2407 – 1846
e-ISSN : 2460 – 8416
==============================================================================================================