Investigation of Drilling Parameters Affecting Borehole Circularity in Cortical Bone

Arzaq Guruh Dityamri, Gusri Akhyar Ibrahim, Suryadiwansa Harun, Yanuar Burhanuddin

Abstract


Cortical bone drilling is a critical step performed prior to implant bolt placement, where drilling parameters play a significant role in the success of the procedure. This study investigates the effects of rotational speed, feed rate, and cooling fluid type on the outcome of the drilling process. A Box-Behnken experimental design was employed, involving 15 samples. Drilling operations were conducted using an SS316L drill bit on a 3-axis CNC machine. Circularity was analyzed using a Mitutoyo PJ3000 profile projector by measuring the x- and y-axis lines of the drill hole shadows under projector illumination. Hardness testing of bone specimens revealed an average microhardness of 45.48 HV with a standard deviation of 1.74, indicating their suitability as a human bone model. The lowest circularity value, 0.00125, was achieved at a rotational speed of 1,500 rpm, a feed rate of 60 mm/min, and in the absence of coolant. ANOVA results show that the feed rate (Vf) significantly affects circularity compared to rotational speed (V) and coolant, with a P-value of 0.0126 and an F-value of 8.86. These findings provide insights for optimizing cortical bone drilling procedures in biomedical applications. Future research should explore temperature distribution across the specimen and drill bit wear resistance resulting from the drilling process.

Keywords


cortical bone drilling; circularity; feed rate; rotational speed; biomedical engineering

Full Text:

PDF

References


A. Kumar and R. Ghosh, “A review on experimental and numerical investigations of cortical bone fracture. Proceedings of the Institution of Mechanical Engineers,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 236, no. 3, pp. 297–319, 2022, doi: 10.1177/09544119211070347.

A. Ding and M. Marmor, “Drilling Technique Can Minimize Plunging,” J. Orthop. Trauma, vol. 33, no. 8, pp. E309–E312, 2019, doi: 10.1097/BOT.0000000000001490.

H. Wang , Xiangsheng Gao A, Boxu Wang A, Min Wang A. B, Yunan Liu C, Tao Zan A, Peng Gao A, Chaozong Liu, “Evaluation of temperature distribution for bone drilling considering aging factor,” Med. Nov. Technol. Devices, vol. 16, no. July, p. 100174, 2022, doi: 10.1016/j.medntd.2022.100174.

C. Samarasinghe, M. Uddin, S. Bari, and C. Xian, “Temperature and force generation in surgical bone drilling,” AIP Conf. Proc., vol. 2324, no. February, 2021, doi: 10.1063/5.0037543.

J. Sui, C. Wang, and N. Sugita, “Experimental study of temperature rise during bone drilling process,” Med. Eng. Phys., vol. 78, pp. 64–73, 2020, doi: 10.1016/j.medengphy.2020.01.007.

K. Giasin and S. Ayvar-Soberanis, “An Investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA,” Compos. Struct., vol. 159, pp. 745–760, 2017, doi: 10.1016/j.compstruct.2016.10.015.

U. Koklu, S. Morkavuk, C. Featherston, M. Haddad, D. Sanders, M. Aamir, D. Yu, Pimenov, K. Giasin, “The effect of cryogenic machining of S2 glass fibre composite on the hole form and dimensional tolerances,” Int. J. Adv. Manuf. Technol., vol. 115, no. 1–2, pp. 125–140, 2021, doi: 10.1007/s00170-021-07150-y.

A. Pramanik, A. K. Basak, C. Prakash, S. Shankar, and S. Chattopadhyaya, “Sustainability in drilling of aluminum alloy,” Clean. Mater., vol. 3, no. January, p. 100048, 2022, doi: 10.1016/j.clema.2022.100048.

K. Alam, M. Iqbal, J. Umer, M. Amjad, and A. Al-Ghaithi, “Experimental study on biological damage in bone in vibrational drilling,” Biomed. Mater. Eng., vol. 31, no. 5, pp. 269–277, 2020, doi: 10.3233/BME-201122.

M. Balaji, K. Venkata Rao, N. Mohan Rao, and B. S. N. Murthy, “Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration,” Meas. J. Int. Meas. Confed., vol. 114, no. August 2015, pp. 332–339, 2018, doi: 10.1016/j.measurement.2017.09.051.

B. Materials, K. Alam, M. Iqbal, J. Umer, and M. Amjad, “un co rre cte d pr o of ve on,” no. September, 2020, doi: 10.3233/BME-201122.

M. R. Effatparvar, N. Jamshidi, and A. Mosavar, “Appraising efficiency of OpSite as coolant in drilling of bone,” J. Orthop. Surg. Res., vol. 15, no. 1, pp. 1–5, 2020, doi: 10.1186/s13018-020-01710-w.

G. Ti. Sheng, “The Effect of Using Coolant during Bone Drilling for Surgery Application,” Universiti Teknologi Petronas, 2016.

J. C. Woods, J. L. Cook, C. C. Bozynski, J. D. Tegethoff, K. Kuroki, and B. D. Crist, “Ioj-2022-022,” vol. 42, no. 2, pp. 22–29.

G. A. Ibrahim, Y. Burhanuddin, and D. Embrijakto, “Analisis Kepresisisan Lobang Bor Pada Pemesinan Magnesium Az31 Menggunakan Metode Taguchi,” FLYWHEEL J. Tek. Mesin Untirta, vol. V, no. 1, p. 29, 2019, doi: 10.36055/fwl.v0i0.5116.

B. Özcolak, B. Erenay, S. Odabaş, K. D. Jandt, and B. Garipcan, “Effects of bone surface topography and chemistry on macrophage polarization,” Sci. Rep., vol. 14, no. 1, pp. 1–16, 2024, doi: 10.1038/s41598-024-62484-3.

X. J. Wang, X. B. Chen, P. D. Hodgson, and C. E. Wen, “Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 16, no. SUPPL., 2006, doi: 10.1016/S1003-6326(06)60293-8.

S. Li et al., “Atlas of Human Skeleton Hardness Obtained Using the Micro-indentation Technique,” Orthop. Surg., vol. 13, no. 4, pp. 1417–1422, 2021, doi: 10.1111/os.12841.

L. Xuan and J. Wang, “A new type of high hardness coating for improving drill bit stability in unconventional oil and gas development,” Front. Energy Res., vol. 11, no. September, pp. 1–8, 2023, doi: 10.3389/fenrg.2023.1277648.

P. B. F. Soares, S. A. Nunes, S. D. Franco, R. R. Pires, D. Zanetta-Barbosa, and C. J. Soares, “Measurement of elastic modulus and vickers hardness of surround bone implant using Dynamic Microindentation-parameters definition,” Braz. Dent. J., vol. 25, no. 5, pp. 385–390, 2014, doi: 10.1590/0103-6440201300169.

G. A. Ibrahim, A. Hamni, and R. Rahmadani, “The Analisis Kekasaran Permukaan Dan Kebulatan Pada Pemesinan Drill Paduan Magnesium Menggunakan Metode Taguchi,” Mach. J. Tek. Mesin, vol. 5, no. 1, pp. 1–8, 2019, doi: 10.33019/jm.v5i1.736.

R. L. Wasserstein and N. A. Lazar, “The ASA’s Statement on p-Values: Context, Process, and Purpose,” Am. Stat., vol. 70, no. 2, pp. 129–133, 2016, doi: 10.1080/00031305.2016.1154108.

Y. Hendronursito, T. Ojahan Rajagukguk, R. Nur Safii, A. Sofii, K. Isnugroho, D. Candra Birawidha, M. Amin, M. Muttaqii., “Analysis of Aluminium Basalt Particulate Composite Using Stirring Casting Method Through Taguchi Method Approach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 807, no. 1, 2020, doi: 10.1088/1757-899X/807/1/012003.

A. Z. Sultan, S. Sharif, and D. Kurniawan, “Effect of Machining Parameters on Tool Wear and Hole Quality of AISI 316L Stainless Steel in Conventional Drilling,” Procedia Manuf., vol. 2, no. February, pp. 202–207, 2015, doi: 10.1016/j.promfg.2015.07.035.

P. W. Ndaruhadi and B. Santosa, “Akurasi Lubang Bor Hasil Proses Pengeboran Pada Material SKD-11,” in Prosiding SNIJA, LPPM Unjani, 2015, pp. 191–195.

M. Aamir, A. Sharif, M. Z. Zahir, K. Giasin, and M. Tolouei-Rad, “Experimental Assessment of Hole Quality and Tool Condition in the Machining of an Aerospace Alloy,” Machines, vol. 11, no. 7, pp. 1–14, 2023, doi: 10.3390/machines11070726.




DOI: https://doi.org/10.24853/sintek.18.2.71-79

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ