ANTIBACTERIAL ACTIVITY OF Bacillus sp ISOLATED FROM LIWA BOTANICAL GARDEN SOIL AGAINST Dickeya sp.
Abstract
The soil Bacillus group has been reported to produce antibacterial compounds. One of the plant pathogenic bacteria is Dickeya sp. which causes A strain of Bacillus bacteria from the soil of the Liwa Botanical Garden (KRL) has been successfully found and showed antibacterial activity against Dickeya sp. The Bacillus strain has been characterized as Bacillus vallismortis RKB1 strain through 16S rRNA phylogenetic analysis. This study aims to determine the activity of antibacterial compounds of Bacillus from KRL soil against Dickeya sp. Crude extract produced from liquid culture of Bacillus vallismortis RKB1 on antibacterial production medium showed antibacterial activity against Dickeya sp. Separation of compounds from crude extract by open column chromatography produced 8 fractions and there were 3 active fractions that showed inhibition against Dickeya sp. in the antibacterial activity test through agar disc diffusion. Fraction 54 showed the greatest inhibition and was classified as strong with an inhibition zone of 13.5 mm at a stock concentration of 5000 μg/ml. The fraction has a Minimum Inhibitory Level (KHM) at a concentration of 500 μg/ml based on turbidity value and resazurin staining through liquid microdilution. The identification results of Thin Layer Chromatography (KLT) on the active fraction with eluent n-hexanaana: ethyl acetate (7:3) showed a polar complex .This indicates that the compounds in the active fraction contain peptide compounds.
Full Text:
PDFReferences
Mahfut, A. Anggraeny, S. Wahyuningsih, T T. Handayani, and Sukimin, Identification of Disease and Efforts to Protect Native Orchid Plants Against Bacteria Infection in Liwa Botanical Garden. Journal of Physics Conference Series, 1641, pp. 1-8 (2020).
Raoul des Essarts, Y., Cigna, J., Laurent, A.Q., Caron, A., Munier, E., Cirou, A.B., Hellas, V.,Faure, D. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola, Applied and Environmental Microbiology, 82, pp. 268-278 (2016).
Toth, I.K., van der Wolf, J.M., Saddler, G., Lojkowska, E., Helias, V., Pirhonen, M., Tsror, L., Elphinstone, J.G. Dickeya species: An Emerging Problem for Potato Production in Europe. Plant Pathology, 60, pp. 385-399
(2011).
Chi, N. M., Anh, D.T.K., Hung, T.X., Nhung,
N.P., Ba, O.H.Q., Toan, D.V, Nga, N.T.T.,
Thuy, P. T.T., Vo, D.N., Dell, B.B. Soft Rot Disease Caused Dickeya fangzhongdai in Epiphytic Orchids in Vietnam. Canadian Journal of Plant Pathology, (2021)
Hossain, A., Masum, M.M.I., Wu, X., Abdallah, Y., Ogunyemi, S.O., Wang, Y., Sun, G., Li, B., An, Q. Screening of Bacillus Strains in Biocontrol of Pathogen Dickeya dadantii Causing Stem and Root Rot Disease of Sweet Potato. Biocontrol Science and Technology, pp. 1-19 (2020).
Boluk, G., Arizala, D., Dobhai, S., Zhang, J., Hu, J., Alvarez, A.M., Arif, M. 2021. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated from Pineapple and Taro in Hawaii: Insights into Genome Plasticity, Pathogenicity, and Virulence Determinants. Frontiers in Plant Science, 12(663851), pp. 1- 26.
Adiba, A. Pengaruh Bahan Kimia Terhadap Penggunaan Pestisida Lingkungan, Jurnal Kimia FMISOPROPANOL Universitas Hasanudin, 3(4), pp. 134-143 (2015).
Czajkowski, R., de Boer, W.J., van veen, J.A., van der Wolf, J.M. 2011. Characterization of Bacterial Isolates from Rotting Potato Tuber Tissue Showing Antagonism to Dickeya sp. Biovar 3 In Vitro and In Planta. Plant Pathology, 61, pp. 169-182.
Napitupulu, H.G., Rumega, I.F.M., Wullur, S. 2019. Bacillus sp. Sebagai Agensia dalam Pemeliharaan Brachionus rotundiformis yang Menggunakan Ikan Mentah Sebagai Sumber Nutrisi. Jurnal Ilmiah Platax, 7(1), pp. 158- 169.
Mongkolthanaruk, W. 2012. Classification of Bacillus Beneficial Substances Related to Plants, Humans, and Animals. Journal of Microbiology and Biotechnology, 22(12), pp 1597-1604.
Li, J., Hu, M., Xue, Y., Chen, X., Lu, G.,
Zhang, L., Zhou, J. 2020. Screening Identification and Efficacy Evaluation of Antagonistic Bacteria for Biocontrol of Soft Rot Disease Caused by Dickeya zeae. Microorganisms, 8(967), pp. 1-19.
Handayani, K., Royanti, V., Ekowati, C.N. 2023. Indeks Keanekaragaman Bakteri Bacillus sp. dari Tanah Kebun Raya Liwa, Gunung Djati Conference Series, 18 pp. 46-52.
Tinajero, S.R., Hernandez, E.O., Drouaillet, B.E., Espinosa, J.H.T.S. 2021. In vitro Antagonist Biocontrol of Fusarium oxysporum and Dickeya chrysanthemi, Mexican Journal of Phytopathology, 39(3), pp. 515-528.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., Mahillon, J. 2019. Overview of the Antimicrobial Compounds Produced by Member of the Bacillus subtilis Group. Frontiers in Microbiology, 10(302), pp. 1-19.
Dimkic, I., Stankovic, S., Nisavic, M., Petkovic, M., Ristivojevic, P., Fira, D., Beric,
T. 2017. The Profile and Antimicrobial Activity of Bacillus Lipopeptide Extracts of Five Potential Biocontrol Strains. Front Microbiology. 8(925), pp. 1-12.
Jacques, P. 2011. Surfactin and Other Lipopeptides from Bacillus spp. in Microbiology Monographs (Springer, Munster, Germany).
Sethi, S., Kumar, R., Gupta, S. 2013. Antibiotic Production by Microbes Isolated from Soil, International Journal of Pharmaceutical Sciences and Research, 4(8), pp. 2967-2973.
Mueller Hinton Agar (MilliporeSigma, Composition Media, #70191, pp. 1-2) (2018).
Winastri, N.L.A.P., Muliasari, H., Hidayati, E. 2020. Aktivitas Antibakteri Air Perasan
Rebusan Daun Calincing (Oxalis corniculata L.), Berita Biologi Jurnal Ilmu-Ilmu Hayati, 19(2), pp. 223-230.
Kusuma, I.M., Jastian, S.Y., Amir, M. 2022. Aktivitas Antibakteri Ekstrak Metanol Kulit Buah Kawista (Limonia acidissima) Terhadap Bakteri Staphylococcus aureus. Sainstech Farma, 15(1), pp. 31-34.
Das, P., Mukherjee, S., Sen, R. 2008. Antimicrobial Potential of a Lipopeptide Biosurfactant Derived from a Marine Bacillus circulans, Journal of Applied Microbiology, 104, pp. 1675-1684.
Nurdiani, D. 2018. Buku Informasi Melaksanakan Analisis Secara Kromatografi Konvensional Mengikuti Prosedur, (Kementerian Pendidikan dan Kebudayaan Direktorat Jenderal Guru dan Tenaga Kependidikan Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Pertanian, 2018).
Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I.M. 2016. Resazurin-Based 96-Well Plate Microdilution Method for The Determination of Minimum Inhibitory Concentration of Biosurfactant. Biotechnol Lett, 38 pp 1015-
Kusumaningrum, H.D., Handayani, L., Novianti, R. 2016. Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance, Media Peternakan, 39(2), pp. 67-74.
Tamura, K., Stecher, G., Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120.
Setiani, N.A., Agustina, N., Mardiah, I., Hamdani, S., Astriany, D. 2016. Potensi Bacillus cereus dalam Produksi Biosurfaktan, Jurnal Biologi Udayana, 24(2), pp. 135-141.
Tan J.B.L., Lim, Y. 2015.Critical Analysis of Current Methods for Assessing The in vitro Antioxidant and Antibacterial Activity of Plant Extract, Food Chemistry, 172 pp 814-822.
Barale, S., Ghane, S.G., Sonawane, K.D. 2022. Purifcation and Characterization of Antibacterial Surfactin Isoforms Produced by Bacillus velezensis SK, SMB Express, 12(7),
pp. 1-20.
Dimkic, I., Janakiev, T., Petrovic, M., Degrassi, M., Fira, D. 2022. Plant-Associated Bacillus and Pseudomonas Antimicrobial Activities in Plant Disease Suppression via Biological
Control Mechanisms - A Review. Physiological and Molecular Plant Pathology, 117, pp. 1-13.
Fira, D., Dimkic, I., Beri, T., Lozo, ‘c. J., Stankovi ´ c, S. 2018. Biological Control of Plant Pathogens by Bacillus species, Journal of Biotechnology, pp. 1-44.
Aronson, J.K. 2016. Chloramphenicol Meyler’s
Side Effects of Drugs. ELSEVIER.
Lizayana, Mudatstir, Iswadi. 2016. Densitas Bakteri Pada Limbah Cair Pasar Tradisional, Jurnal Ilmiah Mahasiswa Pendidikan Biologi, 1(1), pp. 95-106.
Hasegawa, M., Kishino, H., Yano, T. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174.
Roberts, M.S., Nakamura, L. K., Cohan, F.M. 1996. Bacillus vallismortis sp. nov., a Close Relative of Bacillus subtilis, Isolated from Soil in Death Valley, California. International Journal of Systematic Bacteriology, 46(2), pp. 470-475.
Duan, Y., Chen, R., Zhang, B., Jiang, W., Chen, X., Yin, C. 2022. Isolation and Identification Bacillus vallismortis HSB-2 and its Biocontrol Potential Against Apple Replant Disease. Biological Control, 170.
Duarte, I.O., Hissa, D.C., Quintela, B.C.S.F., Rabelo, M.C., da Silva Oliveira, F.A., Lima, N.C.B., Melo, V.M.M. 2023. Genomic Analysis of Surfactant-Producing Bacillus vallismortis TIM68: First Glimpse at Species Pangenome and Prediction of New Plisopropanolstatin-Like Lipopeptide. Applied Biochemistry and Biotechnology, 195 pp. 753–
Li, Y., Wang, R., Liu, J., Xu, L., Ji, P., Sun, L., Pan, H., Jiang, B., Li, L. 2018.
Identification of a Biocontrol Agent Bacillus vallismortis BV23 and Assessment of Effects of its Metabolites on Fusarium graminearum Causing Corn Stalk Rot. Biocontrol Science and Technology, 29(3).
Zhao, Z., Wang, Q., Wang, K., Brian, K., Liu,
C. 2010. Study of The Antifungal Activity of Bacillus vallismortis ZZ185 in vitro and Identification of its Antifungal. Bioresource Technology, 101.
Siregar, H.M., Purwantoro, R.S., Praptiwi, Agusta, A. 2018. Antibacterial potency of simple fractions of ethyl acetate extract Begonia baliensis. Nusantara Bioscience 10(3): 159-163.
Refbacks
- There are currently no refbacks.