Effect of PVP Concentration on PVDF-TiO2-PVP Mixed Matrix-Membrane Properties and Performance
Abstract
PVDF-TiO2-PVP flat sheet mixed matrix membranes were prepared using non-solvent phase inversion method. This research examined how the PVP concentration (1-5 %wt) as a pore-generating agent affects membrane characteristics. The membrane performance was evaluated by measuring the water flux, permeate flux, and BSA rejection. The hydrophilic membrane with the least contact angle was 65.79o, achieved with 2%wt PVP, whereas the most significant contact angle was 83.07o, obtained with 5%wt PVP. FESEM-EDX of a membrane containing 2%wt PVP reveals the presence of PVDF and TiO2. The highest PVP weight percentage resulted in the most excellent permeate flux. The highest water flux measured was 182.38 L/m2h, and the highest BSA flux measured was 160.98 L/m2h. PVP at 5% weight led to the lowest BSA rejection (50.84%). This study found that the PVP weight percentage substantially impacts membrane characteristics and performance.
Keywords: PVDF; TiO2; PVP; mixed-matrix membranes; phase inversion; NIPS; flat-sheet; BSA
Full Text:
PDFReferences
J. Zuo, T. S. Chung, G. S. O’Brien, and W. Kosar, “Hydrophobic/hydrophilic PVDF/Ultem® Dual-Layer Hollow Fiber Membranes with Enhanced Mechanical Properties For Vacuum Membrane Distillation,” J Memb Sci, vol. 523, pp. 103–110, Feb. 2017, doi: 10.1016/j.memsci.2016.09.030.
A. Ghobadi Moghadam and A. Hemmati, “Improved Water Purification by PVDF Ultrafiltration Membrane Modified with GO-PVA-NaAlg hydrogel,” Sci Rep, vol. 13, no. 1, p. 8076, 2023, doi: 10.1038/s41598-023-35027-5.
A. H. Behroozi and M. R. Ataabadi, “Improvement In Microfiltration Process of Oily Wastewater: A Comprehensive Review Over Two Decades,” Journal of Environmental Chemical Engineering, Elsevier Ltd, vol. 9, no. 1, 2021. doi: 10.1016/j.jece.2020.104981.
Abba, M.U., H.C. Man., R.S. Azis., A.I. Idris., M.H. Hamzah., K.F. Yunos., and K.K. Katibi. (2021) ‘Novel PVDF-PVP Hollow Fiber Membrane Augmented with TiO2 Nanoparticles: Preparation, Characterization and Application for Copper Removal from Leachate’, Nanomaterials, 11(2), pp. 1–18. https://doi.org/10.3390/nano11020399.
M. Ghadiri, M. Asadollahzadeh, and A. Hemmati, “CFD Simulation For Separation of Ion From Wastewater In A Membrane Contactor,” Journal of Water Process Engineering, vol. 6, pp. 144–150, Jun. 2015, doi: 10.1016/j.jwpe.2015.04.002.
L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric Membranes Incorporated With Metal/Metal Oxide Nanoparticles: A Comprehensive Review,” Desalination, vol. 308. pp. 15–33, Jan. 02, 2013. doi: 10.1016/j.desal.2010.11.033.
H. C. Man, M. U. Abba, M. Abdulsalam, R. S. Azis, A. I. Idris, and M. H. Hamzah, “Utilization of Nano-TiO2 as An Influential Additive For Complementing Separation Performance of A Hybrid Pvdf-Pvp Hollow Fiber: Boron Removal From Leachate,” Polymers (Basel), vol. 12, no. 11, pp. 1–19, Nov. 2020, doi: 10.3390/polym12112511.
E. Faghih Nasiri, D. Yousefi Kebria, and F. Qaderi, “An Experimental Study on the Simultaneous Phenol and Chromium Removal From Water Using Titanium Dioxide Photocatalyst,” Civil Engineering Journal, vol. 4, no. 3, p. 585, 2018, doi: 10.28991/cej-0309117.
K. Ding., N. Wang., X. Huang., C. Liao., S. Liu., M. Yang., and Y-Z. Wang. “Enhancing Lipid Productivity With Novel SiO2-modified Polytetrafluoroethylene (PTFE) Membranes In A Membrane Photobioreactor,” Algal Res, vol. 45, no. September 2019, 2020, doi: 10.1016/j.algal.2019.101752.
C. S. Ong, W. J. Lau, P. S. Goh, B. C. Ng, T. Matsuura, and A. F. Ismail, “Effect of PVP Molecular Weights on the Properties of PVDF-TiO2 Composite Membrane for Oily Wastewater Treatment Process,” Separation Science and Technology (Philadelphia), vol. 49, no. 15, pp. 2303–2314, Oct. 2014, doi: 10.1080/01496395.2014.928323.
M. Sadrzadeh and S. Bhattacharjee, “Rational Design of Phase Inversion Membranes By Tailoring Thermodynamics and Kinetics of Casting Solution Using Polymer Additives,” J Memb Sci, vol. 441, pp. 31–44, Aug. 2013, doi: 10.1016/j.memsci.2013.04.009.
A. Abdullah, P. Peechmani, M. Hafiz, D. Othman, and M. Hafiz, “Removal of Organic Dye in Wastewater Using Polyethersulfone Hollow Fiber Membrane,” Applied Membrane Science & Technology, vol. 26, no. 2, pp. 29–42, 2022.
M. Enayatzadeh, T. Mohammadi, and N. Fallah, “Influence of TiO2 Nanoparticles Loading on Permeability and Antifouling Properties of Nanocomposite Polymeric Membranes: Experimental And Statistical Analysis,” Journal of Polymer Research, vol. 26, no. 10, pp. 11–22, 2019, doi: 10.1007/s10965-019-1892-4.
Gayatri, R., E. Yuliwati., A.N.S. Fizal., M. Z. Zailani., J. Jaafar., M. Zulkifli., W. Taweepreda, and A.N.A. Yahaya., “Effect of TiO2 Concentration in PVDF-TiO2-PVP Mixed Matrix Membrane Performance using Ultrafiltration Process,” Mater Today Proc, pp. 1–8, 2023.
Gayatri, R., A.N.S. Fizal., E. Yuliwati., M. Z. Zailani., J. Jaafar., M.S. Hossain., M. Zulkifli., W. Taweepreda, and A.N.A. Yahaya., “Effect of polyvinylidene fluoride concentration in PVDF-TiO2-PVP composite membranes properties and its performance in bovine serum albumin rejection,” Case Studies in Chemical and Environmental Engineering, p. 100620, Jan. 2024, doi: 10.1016/j.cscee.2024.100620.
Gayatri, R., A.N.S. Fizal., E. Yuliwati., M.S. Hossain., J. Jaafar., M. Zulkifli., W. Taweepreda., and A.N.A. Yahaya, “Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection,” Nanomaterials, vol. 13, no. 6, p. 1023, 2023, doi: 10.3390/nano13061023.
C. S. Ong, W. J. Lau, P. S. Goh, B. C. Ng, and A. F. Ismail, “Preparation and Characterization of PVDF–PVP–TiO2 Composite Hollow Fiber Membranes For Oily Wastewater Treatment Using Submerged Membrane System,” Desalination Water Treat, vol. 53, no. 5, pp. 1213–1223, 2013, doi: 10.1080/19443994.2013.855679.
C. S. Ong, W. J. Lau, P. S. Goh, and A. F. Ismail, “Preparation And Characterization of PVDF-TiO2 Composite Membranes Blended With Different Mw of PVP For Oily Wastewater Treatment Using Submerged Membrane System,” Jurnal Teknologi (Sciences and Engineering), vol. 69, no. 9, pp. 53–56, 2014, doi: 10.11113/jt.v69.3396.
M. Safarpour, A. Khataee, and V. Vatanpour, “Effect of Reduced Graphene Oxide/TiO2 Nanocomposite with Different Molar Ratios On The Performance of PVDF Ultrafiltration Membranes,” Sep Purif Technol, vol. 140, pp. 32–42, Aug. 2015, doi: 10.1016/j.seppur.2014.11.010.
C. Zhao, J. Xue, F. Ran, and S. Sun, “Modification of Polyethersulfone Membranes – A review of Methods,” Prog Mater Sci, vol. 58, no. 1, pp. 76–150, 2013, doi: 10.1016/j.pmatsci.2012.07.002.
S. Ayyaru and Y. H. Ahn, “Application of Sulfonic Acid Group Functionalized Graphene Oxide to Improve Hydrophilicity, Permeability, And Antifouling of PVDF Nanocomposite Ultrafiltration Membranes,” J Memb Sci, vol. 525, pp. 210–219, 2017, doi: 10.1016/j.memsci.2016.10.048.
M. Kumar, Z. Gholamvand, A. Morrissey, K. Nolan, M. Ulbricht, and J. Lawler, “Preparation and Characterization Of Low Fouling Novel Hybrid Ultrafiltration Membranes Based on The Blends of GO-TiO2 Nanocomposite and Polysulfone For Humic Acid Removal,” J Memb Sci, vol. 506, pp. 38–49, May 2016, doi: 10.1016/j.memsci.2016.02.005.
S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, and H. Zangeneh, “Preparation of a Novel Antifouling Mixed Matrix PES Membrane By Embedding Graphene Oxide Nanoplates,” J Memb Sci, vol. 453, pp. 292–301, Mar. 2014, doi:10.1016/j.memsci.2013.10.070.
Refbacks
- There are currently no refbacks.