The Effect of Gelatinization Time on The Characterization of Edible Films from Soybean Hull Waste
Keywords:
edible film, biodegradability, gelatinization time, soybean hulls, , water vapor transmission rateAbstract
Soybean hull waste is waste from agroindustry, containing high cellulose. Soybean hulls can be utilized as edible film combined with starch. This study investigates the effect of gelatinization time on physicochemical properties of edible films produces from soybean hull waste. Soybean hulls combined with starch were processed into film-forming and subjected to varying gelatinization times (20, 30, 40, 50 and 60 minutes) by solvent casting method. The resulting films were evaluated thickness, water vapor transmission rate (WVTR), solubility, water contain and biodegradable rate. The result demonstrated that increasing gelatinization time significantly the reducing WVP, moisture contain, and higher biodegradable index. However, excessive gelatinization caused polymer degradation, negatively impacting thickness, and solubility. This study highlights the critical role of processing parameters, particularly gelatinization time, in optimizing the functional properties of edible films from soybean hull waste, offering a promising avenue for value-added utilization of agro-industrial residues in biodegradable packaging applications.References
Pinaeva, L.G., and Noskov, A.S; Biodegradable Biopolymers: Real Impact to Environment Pollution. Science of The Environment; 2024, 947, 174445.
Gilani, I.E.; Sayadi, S, Zouari, N., & Al-Ghouti, M.A.; Plastic Waste Impact and Biotechnology: Exploring Polymer Degradation, Microbial Role, and Sustainable Development Implications; Bioresource Technology Reports; 2023, 24, 101606.
Afshar, S.V., Boldrin, A., Astrup, T.F., and Daugaard, A.E.; Degradation of Biodegradable Plastics in Waste Management Systems and The Open Environment: A Critical Review. Journal of Cleaner Production. 2024, 434, 140000.
Cheng, J., Gao, R., Zhu, Y., and Lin, Q.; Application of Biodegradable Materials in Food Packaging: A Review. Alexandria Engineering Journal; 2024, 91, 70 – 83.
Shaikh, S., Yaqoob, M, and Aggarwal, P.; An Overview of Biodegradable Packaging in Food Industry; Current Research in Food Science; 2021, 4, 503 – 520.
Sharma, S., Nakano, K., Kumar, S., and Katiyar, V.; Edible Packaging to Prolong Postharvest Shelf-life of Fruits and Vegetables: A Review; 2024; Food Chemistry Advances, 4, 100711.
Zhao, Z., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., and Zhu, H.; Sustainable Bioplastics Derived from Renewable Natural Resources for Food Packaging; 2023; Matter, 97 – 127.
Rodsamran, P and Sothornvit, R.; Preparation and Characterization of Pectin Fraction from Pineapple Peel as a Natural Plasticizer and Material for Biopolymer Film; 2019; Food and Bioproducts Processing. 118. 198 – 206.
Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., and Gaikwad, K.K.; Pineapple peel extract incorporated poly-vinyl alcohol)-corn starch film for active food packaging : preparation, characterization and antioxidant activity; 2021; International Journal of Biological Macromolecules, 187, 223 – 231.
Caetano, K.dS., Lopes, N.A., Costa, T.M.H., Brandelli, A., Rodrigues, E., Lores, S.H., and Cladera-Olivera, F.; Characterization of active biodegradable films based on cassava starch and natural compounds; 2018; Food Packaging and Shelf Life. 138 – 147.
Lodha, P., Netravali, A.N., Thermal and mechanical properties of environmentfriendly ‘green’plastics from stearic acid modified-soy protein isolate. Ind. Crop. Prod. 2005. 21 (1), 49–64.
Janaswamy, S., Yadav, M.P, Hoque, M., Bhattarai, S., & Ahmed S., Cellulosic fraction from agricultural biomass as a viable alternative for plastics 2 and plastic products; Industrial Crops and Products; 2022; 179, 114692.
OECD-FAO; OECD-FAO Agricultural Outlook 2021-2030; OECD Publishing; Paris; 2021.
Merci, A., Marim, R.G. Urbano, A., and Mali, S.; Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls; 2019; Food Packaging and Shelf Life. 20. 100321.
Setyaningsih, D., Apriyantono, A., Sari, M.P; Analisis Sensori untuk Industri Pangan dan Agro; 2010; Analisis Sensori.
Chen, H., Alee, M., Chen, Y., Zhou, Y., Yang, M., Ali, A., Liu, H., Chen, L., and Yu, L.; Developing Edible Starch Film Used for Packaging Seasonings in Instant Noodles; 2021; Foods, 10, 3105.
Harumani, S., & Ma’ruf, W.F.; Pengaruh perbedaan konsentrasi gliserol pada karakteristik edible film komposit semirefined Karagenan Eucheuma cottoni dan Beeswax; Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 2016; 5 (1), 101 – 105.
Heviyanti, M., Murdhiani, and Maharany, R.; Sugarcane Waste (Saccharum officinarum L) Compostiion in Manufacturing Biodegradable Film; Agroteknika; 2021; 4 (2), 86 – 94.
Suryani, R., R., Hakim, A., Yusrianti, Auvaria, S.W., dan Mustika, I.; Penambahan Chitosan dan Plasticizer Glycerin dalam pembuatan bioplastic berbahan dasar ekstrak protein ampas tahu. Jukung Jurnal Teknik Lingkungan, 2021; 7 (2), 159 – 169.
Alfiani, A., Sasria, N., and Lubis, M.P.D.; Pengaruh Carboxymethyl cellulose terhadap karakteristik Bioplastik menggunakan tandan kosong kelapa sawit dan pati ampas tahu.; 2023; 12 (1), 12 – 16.
Gonzales, A., Gastelu, G., Barrera, G.N., Ribotta, P.D., and Igarzabal, C.I.A.; Preparation and Characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products; Food Hydrocolloids, 2019; 89, 758 – 764.
Khotimah, I., and Tjahjani, S.; Peningkatan Sifat Mekanik Edible Film dari Bungkil Kedelai menggunakan Kitosan-Sorbitol sebagai Pengemas Produk Pangan; Unesa Journal of Chemistry; 2020; 9 (2), 144 – 150.
Fahrullah, Febryanti, F., Anita, C., Basriani, Fitri, Noersidiq, A., & Maslami, V.; Characterization of Protein-Based Edible Film: A Study on Thickness, Gelation Time, and Microstructure with the Addition of Polyethylene Glycol; Jurnal Ilmu dan Teknologi Peternakan Indonesia; 2024; 10 (2), 98 – 106.
Kupervaser, M.G., Traffano-Schiffo, M.V., Dellamea, M.L., Flores, S.K., & Sosa, C.A.; Trends in starch-based edible films and coatings enriched with tropical fruits extracts: a review.
Hasyim, U.H., Aji, N.P., Sari, F., Hendrawati, T.Y., & Nugrahani, R.A.; Characteristics of Edible Film from Rice Bran Starch as Affected by the Concentration of Sorbitol Plasticizer; Proceeding ICE CREAM. 2022. 1-7.
Rachmawati, A., Thohari, I., Al Awwaly, K.U., Apriliyani, M.W., & Widyastuti, E.S.; Characteristics of Biodegradable Film as Food Product Packaging Based on Casein, Chitosan and Gelatin; International Journal of Current Sciene Research and Review. 2023. 06 (09), 6434 – 6445.
Setyaningrum, A., Sumarni, N. K dan Hardi, J. 2017. Sifat Fisiko-Kimia Edible film Agar-AgarRumput Laut (Gracilaria sp.) Tersubtitusi Gliserol. Journal of Science and Technology. 6(2): 136-143.
Diova, D. A., Darmanto, Y. S dan Rianingsih, L. 2013. Karakteristik Edible Film Komposit Semirefined Karaginan Dari Rumput Laut Eucheuma cottonii dan Beeswax. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan. 2(4): 1-10.
Zahwa, A. A., Munasaroh, F., Darmawan, A. E dan Adiyanto, A. N. 2020. Edible Film Mikro alga dan Serasah Daun Mangrove Berbasis Plasticizer Gliserol agai Inovasi Kemasan Biodegradable. Open Journal Systems. 15(1): 3885-3898.
Putri, T.R., Adhitasari, A., Paramita, V., Yulianto, M.E, & Ariyanto, H.D.; Effect of different starch on the characteristics of edible film as functional packaging in fresh meat or meat products: A Review; Materials Today: Proceedings; 2023. 87, 192 – 199.