PENGARUH JEJARI HIDROLIK REGENERATOR DAN FREKUENSI GELOMBANG BUNYI TERHADAP KINERJA POMPA KALOR TERMOAKUSTIK GELOMBANG BERJALAN
Abstract
Keywords
Full Text:
PDFReferences
Anonim, Montreal Protocol http://en.wikipedia.org/wiki/Montreal_Protocol, diakses 20 Agustus 2017.
Bassem, M. Et al. 2011. Thermoacoustic Stirling Heat Pump Working as a Heater. Int. J. Refig. 34, 1125.
Kikuchi, R. Et al. 2015. Measurement of Performance of Thermoacoustic Heat Pump in -3 to 160 °C temperature range. Jpn. J. of Appl. Phys. 54, 117101.
Murti, P. Et al. 2015. Pengaruh panjang stack kasa kawat stainless-steel dan heat exchanger pada kinerja pendingin termoakustik gelombang berdiri berbiaya murah. Proceeding Seminar Nasional Teknik Mesin 10 (SNTM 10) 13 august 2015 Universitas Kristen Petra ISBN: 978-979-25-4419-0
Setiawan, I., et al. 2005. Rancang Bangun Piranti Termoakustik Sebagai Pendingin dan Pemanas Secara Simultan, Laporan Penelitian Antar Bidang Ilmu, Proyek Penelitian Antar Bidang Ilmu, FMIPA UGM, Yogyakarta.
Setiawan, I. 2014. Pembuatan Piranti Pendingin Termoakustik Gelombang Berjalan, Prosiding Seminar Nasional Fisika dan Terapannya (SNAFT IV), 15 November 2014, Universitas Airlangga, Surabaya, Indonesia.
Setiawan, I. Et al. 2017. Experimental Demonstration of the Dependence of Temperature Decrease on the Hydraulic Radius of Regenerator in a Traveling-Wave Thermoacoustic Refrigerator. J. Of Phys: Conf. Ser. 820 012012.
Swift, G.W, 1997, Thermoacoustic Engine, Editor M. J.Crocker, Encyclopedia of Acoustic, John Willey & Sons, New York.
Swift, G.W. 2001. Thermoacoustic: A Unifying Perspective For Some Engine And Refrigerator, Los Alamos National Laboratory, Acoustical Society of America Publication.
Tijani. MEH, et al. 2002. Construction and performance of a thermoacoustic refrigerator. Cryogenics, 42 (2002) 59–66.
Yazaki T. et al. 1998, Travelling wave thermoacoustic engine in a looped tube, Physics Review Letters, 81(15): 3128–3131.
DOI: https://doi.org/10.24853/jurtek.10.2.147-152