PENGARUH JEJARI HIDROLIK REGENERATOR DAN FREKUENSI GELOMBANG BUNYI TERHADAP KINERJA POMPA KALOR TERMOAKUSTIK GELOMBANG BERJALAN

Prastowo Murti, Ikhsan Setiawan, Muhammad Fadly, Solli Dwi Murtyas

Abstract


The refrigerant in the conventional heat pump has affected to the environmental. One of them is ozone depletion, thus, heat pump which has no impact on the environment is needed. The thermoacoustic heat pump is heat pump device which employs thermoacoustic phenomena and works with no refrigerant hence environmental benign. Thermoacoustics is phenomena sound wave that can cause a temperature difference or vice versa. The thermoacoustic heat pump produces temperature difference in the both side of the regenerator in which can be used as refrigerator and heater. Thermoacoustic heat pump consists of resonator tube, loudspeaker, and regenerator. Regenerator is the heart of thermoacoustic which is energy conversion takes place. Therefore, this research focuses on optimization of hydraulic radius of stainless steel wire mesh regenerator and frequency of the sound wave on the performance traveling-wave thermoacoustic heat pump. The experimental results show that hydraulic radius of regenerator and frequency of sound wave gives significant effect to temperature difference on the both side of the regenerator. The largest temperature difference reach is 51,5 °C, which is cold side have 12,2 °C that can be used as a refrigerator and hot side have 63,6 °C that can be used as a heater.

Keywords


thermoacoutic heat pump, traveling-wave, regenerator, frequency

Full Text:

PDF

References


Anonim, Montreal Protocol http://en.wikipedia.org/wiki/Montreal_Protocol, diakses 20 Agustus 2017.

Bassem, M. Et al. 2011. Thermoacoustic Stirling Heat Pump Working as a Heater. Int. J. Refig. 34, 1125.

Kikuchi, R. Et al. 2015. Measurement of Performance of Thermoacoustic Heat Pump in -3 to 160 °C temperature range. Jpn. J. of Appl. Phys. 54, 117101.

Murti, P. Et al. 2015. Pengaruh panjang stack kasa kawat stainless-steel dan heat exchanger pada kinerja pendingin termoakustik gelombang berdiri berbiaya murah. Proceeding Seminar Nasional Teknik Mesin 10 (SNTM 10) 13 august 2015 Universitas Kristen Petra ISBN: 978-979-25-4419-0

Setiawan, I., et al. 2005. Rancang Bangun Piranti Termoakustik Sebagai Pendingin dan Pemanas Secara Simultan, Laporan Penelitian Antar Bidang Ilmu, Proyek Penelitian Antar Bidang Ilmu, FMIPA UGM, Yogyakarta.

Setiawan, I. 2014. Pembuatan Piranti Pendingin Termoakustik Gelombang Berjalan, Prosiding Seminar Nasional Fisika dan Terapannya (SNAFT IV), 15 November 2014, Universitas Airlangga, Surabaya, Indonesia.

Setiawan, I. Et al. 2017. Experimental Demonstration of the Dependence of Temperature Decrease on the Hydraulic Radius of Regenerator in a Traveling-Wave Thermoacoustic Refrigerator. J. Of Phys: Conf. Ser. 820 012012.

Swift, G.W, 1997, Thermoacoustic Engine, Editor M. J.Crocker, Encyclopedia of Acoustic, John Willey & Sons, New York.

Swift, G.W. 2001. Thermoacoustic: A Unifying Perspective For Some Engine And Refrigerator, Los Alamos National Laboratory, Acoustical Society of America Publication.

Tijani. MEH, et al. 2002. Construction and performance of a thermoacoustic refrigerator. Cryogenics, 42 (2002) 59–66.

Yazaki T. et al. 1998, Travelling wave thermoacoustic engine in a looped tube, Physics Review Letters, 81(15): 3128–3131.




DOI: https://doi.org/10.24853/jurtek.10.2.147-152

Refbacks



Powered by Puskom-UMJ