ANALISA KERUGIAN PEMBANGKIT AKIBAT KEBOCORAN AIR MELALUI GUIDE VANE : STUDI KASUS PADA PEMBANGKIT LISTRIK TENAGA AIR BAKARU

Nur Hamzah, Muhammad Ruswandi Djalal, Muhammad Sulfajar Mas’ud

Abstract


To maintain the reliability of the plant so that it continues to operate optimally, therefore the company management has arranged several scheduled maintenance activities. The result of the delay in maintenance had an impact on some equipment so that it suffered fatal damage. One of the mechanical problems that occur in PLTA BAKARU is water leakage that occurs in the guide vane. At the PLTA Bakaru unit, the impact of this guide vane leak can cause the generator to trip with an indication of 133 QBL and require the unit to leave the concession for some time. Thus the result of the disturbance becomes a loss for the company because it cannot produce electricity. From the results of the analysis, it was found that the amount of water needed to generate 1 kwh in unit 1 of PLTA Bakaru was 0.000295 m3 / s, the amount of energy loss caused by leaks in the guide vane was 121,975,031 kWh in 2015; 41,933.26 kWh in 2016; 135,591.42 kWh in 2017; and 518,637.17 kWh in 2018, power losses also occurred in the use of pumps for handling leakages of 75 kW. the amount of water consumption continued to increase from 2015 to 2018 before the overhaull and after overhaul maintenance the SWC value decreased to 0.29365 at 63 MW unit load operations.


Keywords


PLTA Bakaru, Guide Vane, Leaks, SWC

Full Text:

PDF

References


Arifin, Z. (2017). Analisa unjuk kerja dan tingkat kavitasi pada turbin francis di PT. PJB unit pembangkita brangtas unit PLTA Sutami. ITS, Surabaya.

Arismunandar, W. (1982). Penggerak Mula Turbin: ITB.

Dermawan, E., Ramadhan, A., & Ruswandi, E. (2015). Sistem Penanggulangan Kegagalan Proteksi Di Gardu Distribusi Tenaga Listrik B 282. Jurnal Teknologi, 7, 61-64. doi:10.24853/jurtek.7.2.61-64

Djalal, M. R., Yunus, M. Y., Nawir, H., & Imran, A. (2017). Optimal Design of Power System Stabilizer In Bakaru Power Plant Using Bat Algorithm. 2017, 1(2), 6. doi:10.21070/jeee-u.v1i2.1017

Harway, A. (1993). Micro Hydro Design Manual: Aguide to small- scale waterpower scheme: ITDG Publishing.

Kartini. (2011). Model Perencanaan Penjadwalan Dan Keandalan Pembangkit Dengan Sistem Kelistrikan Terinterkoneksi: ITS Press.

Marsudi, D. (2006). Pembangkitan Energi Listrik. Jakarta: Erlangga.

Muhammad, R. D., Herman, N., Sonong, S., & Marhatang, M. J. J. T. (2019). Desain Optimal Power Sistem Stabilizer Pada Unit Pembangkit Bakaru Berbasis Ant Colony Optimization. 21(3), 70-78.

Patty, O. F. (1995). Tenaga Air. Surabaya: Erlangga.

Tangkilisan, P. Y., Tumaliang, H., & Silimang, S. (2015). Analisa Perhitungan Specific Water Consumption Pada Pembangkit Listrik Tenaga Air Di Sistem Minahasa. 2015, 4(5), 10 %J Jurnal Teknik Elektro dan Komputer. doi:10.35793/jtek.4.5.2015.9971

Thapa, B. S., Dahlhaug, O. G., & Thapa, B. (2017). Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine. Renewable Energy, 107, 253-261. doi:https://doi.org/10.1016/j.renene.2017.01.045




DOI: https://doi.org/10.24853/jurtek.15.2.337-344

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ