INVESTIGASI EFEK SOLIDITAS TERHADAP KONTUR TEKANAN SUCTION AREA PADA TURBIN AIR PROPELLER ALIRAN HORISONTAL MENGGUNAKAN COMPUTIONAL FLUID DYNAMIC
Abstract
Internal parameters of the propeller axial turbine affect the performance of the turbine itself. The influence of the internal parameters will provide information on the characteristics of a turbine design and produce optimal performance. Solidity or the ratio of the gaps between turbine blades to the length of the blade chord is one of the internal parameters that affect the performance of the propeller turbine, and visually has similarities to the number of blades parameter. The object of this study is to observe how the solidity of the propeller turbine affects the water pressure contour on the suction side or pressure water before pounding the blade. This study method uses Computational Fluid Dynamic (CFD) with SolidWorks 2016 Flow Simulation software. The variable number of blades used in this study is 3 to 7 blades, with 200 blades each. The results of this study present a plot or a figure with different color contours for each parameter that shows the value of water pressure on the suction and discharge sides, as well as the pressure contour on the surface turbine. This study shows that the higher the solidity value or the more the number of blades, the water pressure in the suction area will increase.
Keywords
Full Text:
PDFReferences
Balaka, R., Rachman, A. & Delly, J. (2014) ‘Blade Number Effect for A Horizontal Axis River Current Turbine at A Low Velocity Condition Utilizing A Parametric Study with Mathematical Model of Blade Element Momentum’, Journal of Clean Energy Technologies, 2(1), pp. 1–5. doi: 10.7763/JOCET.2014.V2.79.
Brijkishore, Khare, R. & Prasad, V. (2020) ‘Performance Evaluation of Kaplan Turbine with Different Runner Solidity Using CFD’, Advances in Intelligent Systems and Computing. Edited by R. V. Rao and J. Taler. Springer Nature Singapore Pte Ltd, 949, pp. 757–767. doi: https://doi.org/10.1007/978-981-13-8196-6_67.
Diniardi, E., Syawaluddin, Ilmar, A., Ramadhan, Fithriyah, N. H. & Dermawan, E. (2018) 'Analisis daya piezoelektrik model hybrid solar cell-piezoelectric skala rendah. Jurnal Teknologi Volume 10 No. 2 https://dx.doi.org/10.24853/jurtek.10.2.139-146
Khare, R. & Prasad, V. (2015) ‘Effect of Solidity on Flow Pattern in Kaplan Turbine Runner’, 6(2), pp. 602–606.
Kharea, R., Prasadb, V. & Kumar, S. (2012) ‘Procedia Environmental Sciences Effect of Runner Solidity on Performance of Elbow Draft Tube’, 14, pp. 2054–2059. doi: 10.1016/j.egypro.2011.12.1207.
Nurdin, A. & Hastuti, S. (2020) ‘Optimalisasi daya output generator pada pico- hydropower menggunakan transmisi roda gigi 1’, 4(2), pp. 7–14.
Nurdin, A. and Himawanto, D. A. (2018) ‘Kajian Teoritis Uji Kerja Turbin Archimedes Screw pada Head Rendah’, Simetris, 9(2), pp. 783–796.
Nurdin, A. & Himawanto, D. A. (2019) ‘Studi numerik kekuatan material transmisi roda gigi pico hydro’, JTMI, 14(1), pp. 24–29.
Nurdin, A., Himawanto, D. A. & Hadi, S. (2020a) ‘Experimental study of the effect of blade angle on pico tubular bulb turbine performance in horizontal flow Experimental Study of the Effect of Blade Angle on Pico Tubular Bulb Turbine Performance in Horizontal Flow’, 030122(April).
Nurdin, A., Himawanto, D. A. & Hadi, S. (2020b) ‘Optimasi perancangan turbin air menggunakan analysis of variance aliran horisontal’, 10(2), pp. 103–109.
Nurdin, A., Himawanto, D. A. & Hadi, S. (2020c) ‘Study of the Effect of Bulb Ratio and Blade Angle on Propeller Turbine Performance in Horizontal Flow using Numerical Simulation’, Teknik, 41(1), pp. 1–5. doi: 10.14710/teknik.v41n1.25328.
Nurdin, A., Himawanto, D. A. & Hadi, S. (2020d) ‘The Utilization Of Horizontal Pipeline For A Static Bulb Turbine And The Determination Of Optimum Blade Number’, 19(2), pp. 61–68.
Muhamad Dewangga & Mohamad Yamin (2021) ‘Rancang Ulang Desain Impeller Kipas Sentrifugal Sistem Pendingin Mesin Sepeda Motor Skutik dengan
Metode Reverse Engineering’, Jurnal Teknologi Universitas Muhammadiyah Jakarta, https://dx.doi.org/10.24853/jurtek.13.1.63-74.
Ramos, H. M., Simão, M. & Borga, A. (2013) ‘Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades’, Journal of Energy Engineering, 139(2), pp. 109–117. doi: 10.1061/(ASCE)EY.1943-7897.0000096.
Samora, I. Hasmatuchi, V. Münch-Alligné, C. Franca, M. J. Schleiss A. J., & Ramos H. M.(2016). ‘Experimental characterization of a five blade tubular propeller turbine for pipe inline installation’, Renewable Energy, 95, pp. 356–366. doi: 10.1016/j.renene.2016.04.023.
Singh, P. & Nestmann, F. (2010) ‘Exit blade geometry and part-load performance of small axial flow propeller turbines : An experimental investigation’, Experimental Thermal and Fluid Science. Elsevier Inc., 34(6), pp. 798–811. doi: 10.1016/j.expthermflusci.2010.01.009.
Versteeg, H. K. &W Malalasekera (2007) An Introduction to Computational Fluid Dynamics. 2nd edn. Glasgow: Pearson Education Limited Edinburgh. Available at: www.pearsoned.co.uk.
DOI: https://doi.org/10.24853/jurtek.14.1.139-146
Refbacks
- There are currently no refbacks.